
This report is Confidential and is expressly limited to NSS Labs’ licensed users.

BREACH PREVENTION SYSTEMS TEST REPORT

Fortinet FortiGate 500E v6.0.3 + FortiClient v6.0.3.6219 + FortiSandbox

v3.0.2

AUGUST 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

Test Methodologies

NSS Labs Breach Prevention Systems (BPS) Test Methodology v2.0

NSS Labs Evasions Test Methodology v1.2

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

2

Fortinet FortiGate 500E v6.0.3 + FortiClient v6.0.3.6219 + FortiSandbox v3.0.2

(AWS BYOL)

Su
m

m
ar

y In Q1 2019 NSS Labs performed an independent test of the Fortinet FortiGate 500E v6.0.3 + FortiClient v6.0.3.6219 +

FortiSandbox v3.0.2 (AWS BYOL). As part of the initial test setup, we tuned devices as they would be by a customer.

Every effort was made to eliminate false positives while achieving optimal security effectiveness and performance.

This executive summary highlights how the product performed in key areas of testing.

Se
cu

ri
ty

NSS security effectiveness tests verify that a solution is capable of blocking and logging threats accurately while

remaining resistant to false positives.

Block Rates

Drive-By Exploits 100.0%

Social Exploits 100.0%

Malware delivered over HTTP 100.0%

Malware delivered over Email (IMAP) 98.9%

False Positives 0.0%

Subsequently Detected

Drive-By Exploits 0.0%

Social Exploits 0.0%

Malware delivered over HTTP 0.0%

Malware delivered over Email (IMAP) 0.5%

False Positives NA

Resistance to Evasions

Network Evasions Blocked 103/119

Binary Evasions Blocked 96/114

Security Effectiveness

97.8%

P
er

fo
rm

an
ce

There is frequently a trade-off between security effectiveness and performance; a product’s security effectiveness

should be evaluated within the context of its performance, and vice versa.

NSS-Tested Throughput

 5,717 Mbps

Maximum Capacity

Max Concurrent TCP Connections 4,275,101

Max TCP Connections per Second 78,420

Maximum HTTP Connections per Second 64,000

HTTP Capacity

2,500 Connections per Second – 44 Kbyte HTTP Response 10,040 CPS | 4,016 Mbps

5,000 Connections per Second – 21 Kbyte HTTP Response 13,460 CPS | 2,692 Mbps

TC
O

Total Cost of Ownership

3-Year Total Cost of Ownership $22,602

The product was subjected to thorough testing based on the Breach Prevention Systems (BPS) Test Methodology v2.0

(available at www.nsslabs.com). As with any NSS Labs group test, the test described herein was conducted free of charge.

http://www.nsslabs.com/
http://www.nsslabs.com/

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

3

Table of Contents

Test Methodologies ... 1

Test Environment .. 6

Security Effectiveness ... 7

Tuning and False Positives ... 7

Attacks Against Users .. 8

Malware Delivered over Email ... 8

Malware Delivered over HTTP ... 9

Attacks Against Computers.. 10

Drive-By Exploits .. 10

Attacks Against Users and Computers (Blended Attacks) ... 11

Social Exploits .. 12

Offline Infection ... 13

Resistance to Network Evasions .. 15

IP Fragmentation ... 16

TCP Segmentation.. 17

HTTP Obfuscation .. 18

HTTP Compression ... 20

HTML Obfuscation ... 21

Protection Resiliency .. 23

Resistance to Binary Evasions .. 28

Packers 28

Compressors .. 29

Anti-Discovery.. 32

Anti-Sandbox.. 32

Anti-Debugger ... 33

Anti-Monitor .. 33

Data Exfiltration... 33

Network Device(s) Performance .. 36

Maximum Capacity .. 36

HTTP Capacity .. 37

Application Average Response Time – HTTP ... 37

HTTP Capacity with HTTP Persistent Connections ... 38

Single Application Flows .. 39

Total Cost of Ownership (TCO) ... 40

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

4

Calculating the Total Cost of Ownership (TCO) ... 40

Installation Time .. 40

3-Year Total Cost of Ownership ... 41

Appendix: Product Scorecard ... 42

Test Environment .. 55

Test Methodology ... 56

Contact Information.. 56

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

5

Table of Figures

Figure 1 – False Positive Rate .. 7

Figure 2 – Malware Delivered over Email .. 8

Figure 3 – Malware Delivered over HTTP .. 9

Figure 4 – Malware Delivered by Drive-by Exploits ... 10

Figure 5 – Malware Delivered by Social Exploits ... 12

Figure 6 – Offline Infection (Employee Use Case) ... 13

Figure 7 – Offline Infection (Contractor Use Case) .. 14

Figure 8 – Evasion Overview Scores .. 15

Figure 9 – IP Fragmentation .. 16

Figure 10 – TCP Segmentation .. 17

Figure 11 – HTTP Obfuscation ... 19

Figure 12 – HTTP Compression .. 20

Figure 13 – HTML Obfuscation .. 22

Figure 14 – Protection Resiliency... 27

Figure 15 – Packer Evasion Results .. 29

Figure 16 – Compressor Evasion Results ... 31

Figure 17 – Detailed Anti-Sandbox Evasion Results... 32

Figure 18 – Detailed Anti-Debugger Evasion Results ... 33

Figure 19 – Detailed Anti-Monitor Evasion Results ... 33

Figure 20 – Ncat Shell and Ncat Data Exfiltration .. 34

Figure 21 – HTTP POST Data Exfiltration ... 34

Figure 22 – SSH Shell & SSH Tunnel Data Exfiltration ... 34

Figure 23 – ICMP Shell & ICMP Tunnel/HTTP POST Data Exfiltration ... 34

Figure 24 – DNS Tunnel & HTTP POST Data Exfiltration ... 34

Figure 25 – USB Keyboard & Ncat Data Exfiltration (Windows 7) ... 34

Figure 26 – USB Keyboard/ Storage & Ncat Data Exfiltration (Windows 7) .. 35

Figure 27 – USB Keyboard & Ncat Data Exfiltration (Windows 10) ... 35

Figure 28 – USB Keyboard/ Storage & Ncat Data Exfiltration (Windows 10) .. 35

Figure 29 – Concurrency and Connection Rates .. 36

Figure 30 – HTTP Capacity ... 37

Figure 31 – Average Application Response Time (Milliseconds) ... 37

Figure 32 – HTTP Capacity with HTTP Persistent Connections .. 38

Figure 33 – Single Application Flows ... 39

Figure 34 – Number of Users ... 40

Figure 35 – Installation Time (Hours) .. 40

Figure 36 – 3-Year TCO (US$)... 41

Figure 37 – Scorecard .. 54

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

6

Test Environment

NSS has created a unique testing infrastructure—the NSS Labs live Continuous Test—which incorporates multiple

product combinations, or “stacks,” within the attack chain. Each stack consists of either an operating system alone

or an operating system with additional applications installed (e.g., a browser, Java, and Adobe Acrobat). This test

harness continuously captures suspicious URLs, exploits, and malicious files from threat data generated from NSS

and its customers, as well as data from open-source and commercial threat feeds. Captured live attacks are then

run again—this time with protection from the system under test enabled.

All live exploits and payloads in this test have been

validated in our lab such that:

• a reverse shell is returned

• a bind shell is opened on the target allowing the

attacker to execute arbitrary commands

• a malicious payload installed

• a system is rendered unresponsive

All live malware in this test has been validated such

that they perform the malicious activity for which

they were intended, for example:

• execute arbitrary commands

• call home to a C&C

• encrypt a disk

• install a keylogger

• steal credit card, social security number, or

other private information

• etc.

For the purposes of the test, we define Block Rate as the percentage of exploits and malware blocked within 15

minutes of introduction. The Subsequently Detected Rate is defined as the percentage of exploits and malware

detected but not blocked within 15 minutes of introduction.

For additional details on live continuous testing, please refer to the latest Security Stack (Network) Test

Methodology, which can be found at www.nsslabs.com.

https://research.nsslabs.com/reportaction/free-98/Toc?SearchTerms=security%20stack

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

7

Security Effectiveness

The threat landscape is evolving constantly; attackers are refining their strategies and increasing both the volume

and complexity of their attacks. Enterprises now are having to defend against everyday cybercriminal attacks as

well as targeted attacks and even the rare advanced persistent threats (APTs). As attacks have increased in both

volume and sophistication, it has become increasingly complicated for an enterprise to monitor its entire network

and endpoints for abnormalities and emerging attack patterns and to take preventative or responsive action.

For this reason, we test several types of attacks ranging from widespread day-to-day attacks and current threat

actor campaigns to targeted attacks and advanced (modified, custom, evasions) attacks. In this test, we validated

whether or not the breach prevention system (BPS) could protect against a wide range of threats and whether or

not these solutions are providing enterprises with the protection they believe they are purchasing.

Our security effectiveness tests verify that a BPS is capable of blocking and logging threats accurately while

remaining resistant to false positives. Testing leverages the deep expertise of NSS engineers who utilize multiple

commercial, open-source, and proprietary tools to employ attack methods that are currently being used by

cybercriminals and other threat actors. All tests in this section are completed with no background network load.

Tuning and False Positives

We performed false-positive testing on machines running 64-bit Microsoft Windows 10 (version 1607 (Build:

14393.0) with Internet Explorer IE 11 (version 11.0.14393.0 – Update version 11.0.33). We downloaded each sample

individually and subsequently executed a subset of the samples to ensure they were not blocked. Enterprise-grade

solutions should produce a false positive rate of 0.0%.

Product False Positive Rate

Fortinet FortiGate 500E v6.0.3 + FortiClient v6.0.3.6219 + FortiSandbox v3.0.2 0.0%

Figure 1 – False Positive Rate

This test includes a varied sample of legitimate

application traffic that may be falsely identified as

malicious (also known as false positives). As part

of the initial setup, we tuned the BPS as it would

be by a customer. Every effort was made to

eliminate false positives while achieving optimal security effectiveness and performance, as would be the aim of a

typical customer deploying the device in a live network environment. To ensure that the vendor did not deploy

unrealistic (overly aggressive) security policies that blocked access to legitimate software and websites, we tested

the BPS against 555 false positive samples, including but not limited to the following file formats: .exe, .jar, .xlsm,

.css, .pdf, .doc, .docx, .zip, .DLL, .js, xls, .chm, .rar, .Ink, .cur, .xrc.

The Fortinet FortiGate 500E v6.0.3 + FortiClient

v6.0.3.6219 + FortiSandbox v3.0.2 did not alert on any

of the 555 false positive samples it was tested against.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

8

Attacks Against Users

The “attack against a user” scenario is one in which a user is tricked into unknowingly clicking on a web link, which

contains a malicious file that is subsequently downloaded and installed. These attacks are commonly referred to as

socially engineered malware (SEM).

• Via email (IMAP): An example could be an email

with the topic “Sales Commission Calculator” and

containing a malicious attachment labeled

“commission.exe” that an employee opens and

inadvertently installs.

• From a website/via HTTP: An example would be

where an employee is tricked into downloading

and installing a malicious application named

“speedy.exe” that claims it will “speed up your

PC.”

Malware Delivered over Email

To test how well the BPS is able to protect against this type of attack, email was delivered to the desktop client via

IMAP. A CentOS 7 Linux mail store with kernel 3.10.0-957.5.1.el7.x86_64 running Dovecot v2.2.36 for IMAP was

deployed. The victim machine was running 32-bit Windows 7 (version 6.1 (Build 7601: SP1). We measured the

solution’s capability to block or detect malware delivered over IMAP. (The samples were executed if the download

was not blocked).

Figure 2 – Malware Delivered over Email

One of the most common ways in which users are

compromised is through malware delivered over email.

For several years, the use of social engineering has

accounted for the bulk of cyberattacks against consumers

and enterprises. Socially engineered malware attacks

often use a dynamic combination of social media, hijacked

email accounts, false notification of computer problems, and other deceptions to encourage users to download

malware. One well-known social engineering attack method is spear phishing. Cybercriminals use hijacked email

accounts to take advantage of the implicit trust between contacts and deceive victims into believing that the sender

is trustworthy. The victim is tricked into opening the email attachment, which then launches the malicious malware

program.

Overall

Subsequently Detected

Blocked

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Em
ai

l (
IM

A
P

)

Email (IMAP)

Blocked 98.9%

Subsequently Detected 0.5%

Overall 99.5%

The Fortinet FortiGate 500E v6.0.3 +

FortiSandbox v3.0.2 + FortiClient v6.0.3.6219

blocked 729 and subsequently detected four of

the 737 samples it was tested against.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

9

Malware Delivered over HTTP

We tested the capability of the BPS to protect against malware that was downloaded over HTTP and then executed

(if the download was not blocked) using 1,037 malware samples against 1,037 victim machines running 64-bit

Windows 7 (version 6.1 (Build 7601: SP1) with Internet Explorer 11 (version 11.0.9600.17843 – Update version

11.0.20). Microsoft Internet Explorer’s SmartScreen reputation system was disabled so that the BPS was not

inadvertently credited for protection offered by the web browser.

Figure 3 – Malware Delivered over HTTP

One of the more widespread threats to the enterprise involves

attackers using websites to deliver malware. In these web-based

attacks, the user is deceived into clicking on a malicious link (on,

for example, a web page or a banner advertisement) to

download and execute malware. In cases where an attacker is

aiming for a large number of victims, the attacker may hijack

widely used reputable websites to distribute the malware. However, in cases where an attacker plans to target

specific individuals, the attacker typically would use an industry-specific “watering hole” plus one or more social

engineering techniques to deceive a user into unknowingly installing malware. Malware delivered via HTTP

frequently employs one or more evasion techniques. Please see the Resistance to Network Evasions section for more

detail.

Overall

Subsequently Detected

Blocked

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

H
TT

P

HTTP

Blocked 100.0%

Subsequently Detected 0.0%

Overall 100.0%

The Fortinet FortiGate 500E v6.0.3 +

FortiSandbox v3.0.2 + FortiClient

v6.0.3.6219 blocked all 1,037 of the

samples it was tested against.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

10

Attacks Against Computers

While vulnerabilities are patched and defenses against exploits incorporated into new versions of operating

systems (i.e., Windows), many organizations cannot easily upgrade due to financial, technical, or other constraints.

NSS research has found that as of June 2019, Net Marketshare1 reports OS market share for Windows 7 (released

10 years ago in 2009) at 38.06% and for Windows 10 (released in 2015) at 40.61%.

Research has shown that oftentimes the most valuable assets have the most stringent change control to avoid

business interruption. This creates a challenging dynamic whereby the most valuable assets tend to be the most

difficult to defend (e.g., older OS, unpatched, etc.). Therefore, as vulnerabilities are patched and defenses against

exploits are incorporated into new versions of operating systems (i.e., Windows)—which makes exploitation of

computers more difficult—the value of a BPS is often associated with its ability to protect older, unpatched, and

generally more vulnerable systems.

Drive-By Exploits

To test how well the solution was able to protect against drive-by exploits, we deployed 66 victim machines running

32-bit Windows 7 (version 6.1 (Build 7601: SP1) with Internet Explorer 9 (version 9.0.8112.16421 – Update version

9.0.26). Depending on the victim machine, one or more of the following applications was installed: Adobe Flash

Player 18.0.0.160, Adobe Flash Player 18.0.0.160, Java 6 Update 27 and Microsoft Silverlight 5.1.20125, Adobe Flash

Player 29.0.0.171, Adobe Reader 9.40, Adobe Reader DC 2017.012.20093, Java 6 Update 27, Java 8 Update 171, Java

8 Update 181, Microsoft Silverlight 5.1.20125. Microsoft Internet Explorer’s SmartScreen reputation system was

disabled so that the BPS was not inadvertently credited for protection that was offered by the web browser.

Figure 4 – Malware Delivered by Drive-by Exploits

1 Source: https://netmarketshare.com

Overall

Subsequently Detected

Blocked

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
ri

ve
-B

y
Ex

p
lo

it
s

Drive-By Exploits

Blocked 100.0%

Subsequently Detected 0.0%

Overall 100.0%

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

11

In a drive-by exploit, an employee visits a website

containing malicious code that exploits the user’s

computer and installs malware without the

knowledge or permission of the user. An example of

this would be where an employee visits WSJ.com

(Wall Street Journal), which is inadvertently hosting an advertisement that contains an exploit. A single exploit can

silently deliver and install millions of malware samples to unsuspecting victim computers.

In a given year, there are hundreds of unique exploits, but there are millions (or hundreds of millions) of malware

samples. An enterprise would typically see fewer unique exploits than unique malware since the exploits are reused

many times over, while malware tends to be used once and then discarded by attackers.

Attacks Against Users and Computers (Blended Attacks)

These attacks combine tricking a user (social engineering) with exploiting a technical weakness in order to take

control of a computer and install malware without the knowledge or permission of the user.

• Social Exploits – An employee is tricked into opening an email attachment containing malicious code that

exploits the user’s computer and installs malware without the knowledge or permission of the user. An

example of this would be an email with “Your Bonus” as a subject line and containing a malicious spreadsheet

labeled “bonus.xlsx” (which the employee opens).

• Offline infections – Computers can become infected while an employee is disconnected from the corporate

network and the Internet. What happens once the infected devices are reattached to the corporate network?

An example could be where an employee goes on a business trip to China where Internet traffic is tightly

controlled. Access to the corporate VPN is blocked and the security software on the employee’s laptop cannot

receive updates or communicate in general. The employee is (from a security perspective) offline. During this

time period, her laptop is infected with malware. What happens when the employee returns to the office?

The Fortinet FortiGate 500E v6.0.3 + FortiSandbox

v3.0.2 + FortiClient v6.0.3.6219 blocked all 66 of

the samples it was tested against.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

12

Social Exploits

Social exploits combine social engineering (manipulating people into doing what you want them to do) and

exploitation (malicious code designed to take advantage of existing deficiencies in hardware or software systems,

such as vulnerabilities or bugs). As with drive-by exploits, these attacks are limited to specific operating systems

and/or applications. However, the exploits contained within Excel spreadsheets or Word documents may target

kernel functions or common functions such as object handling, which provides attackers with a wide attack

surface. As such, sending social exploits through mass email (phishing), could yield profit as the number of victims

would be large, albeit smaller than in the case of malware since exploits would have technical dependencies.

Figure 5 – Malware Delivered by Social Exploits

To test how well the solution was able to protect

against social exploits, we deployed six victim

machines. Three of the machines ran combinations

of 32-bit Windows 7 (version 6.1 (Build 7601: SP1)

with Internet Explorer 9 (version 9.0.8112.16421 –

Update version 9.0.26), Nitro Pro PDF Reader 11.0.3.173, WinRar 4.20, Adobe Reader 9.3.4. Three of the machines

ran combinations of 64-bit Windows 10 (version 1607 (Build: 14393.0), Internet Explorer 11 (version 11.0.14393.0 –

Update version 11.0.33) and Microsoft Office 2016 with Microsoft Word (version 1609, Build 7369.2038).

Overall

Subsequently Detected

Blocked

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

So
ci

a
l E

xp
lo

it
s

Social Exploits

Blocked 100.0%

Subsequently Detected 0.0%

Overall 100.0%

The Fortinet FortiGate 500E v6.0.3 + FortiSandbox

v3.0.2 + FortiClient v6.0.3.6219 blocked all six of the

samples it was tested against.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

13

Offline Infection

In an offline infection, a host (e.g., a laptop) is infected with malware while not connected to any networks. We

tested two use cases for offline infections:

• Employee Use Case: In this scenario, an employee’s laptop is infected with malware while the employee is

traveling and outside the corporate network. In this test, the security endpoint was enabled and running but

not connected to the Internet. If the endpoint did not discover the malicious sample, it was connected to the

Internet. The BPS was then given 15 minutes to detect any suspicious activity and, if necessary, take action.

Figure 6 – Offline Infection (Employee Use Case)

To test how well the solution was able to protect against

offline infections, we deployed 20 victim machines. Six of

the machines ran 64-bit Windows 7 (version 6.1 (Build

7601: SP1) and Internet Explorer 11 (version

11.0.9600.17843 – Update version 11.0.20), six of which

were running 32-Bit Windows 7 (version 6.1 (Build 7601:

SP1) with Internet Explorer 9 (version 9.0.8112.16421 –

Update version 9.0.26). Eight of the machines ran 64-bit Windows 10 (version 1607 (Build: 14393.0) with Internet

Explorer 11 (version 11.0.14393.0 – Update version 11.0.33).

Overa l l

Blocked on Restoring Network

Blocked on execution

Blocked On Download

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

O
ff

lin
e

- E
m

pl
oy

ee
 U

se
 C

as
e

Offline - Employee Use Case

Blocked On Download 55%

Blocked on execution 45%

Blocked on Restoring Network 0%

Overall 100%

The Fortinet FortiGate 500E v6.0.3 +

FortiClient v6.0.3.6219 + FortiSandbox v6.0.3

blocked 11 samples on download and the

remaining nine on execution.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

14

• Contractor Use Case: In this scenario, a contractor laptop is infected with malware before the contractor

connects to the corporate network. In this test, there was no security endpoint, or if there was, it was not up-

to-date or properly maintained, which enabled an attacker to compromise the laptop. The laptop was then

connected to the network and we observed the malware executing suspicious actions.

Test Result

Contractor Use Case PASS

Figure 7 – Offline Infection (Contractor Use Case)

To test how well the solution was able to protect against

offline infections, we deployed eight victim machines with 64-

bit Windows 7 (version 6.1 (Build 7601: SP1) and Internet

Explorer 11 (version 11.0.9600.17843 – Update version

11.0.20).

The Fortinet FortiGate 500E v6.0.3 +

FortiSandbox v6.0.3 passed the offline

contractor use case.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

15

Resistance to Network Evasions

We tested the BPS against more than 190 network evasions. Each evasion used active exploits (i.e., no pcaps). If an

evasion evaded the victim machine’s protections, it popped a shell on the victim machine. Victim machines in the

test harness did not have endpoints installed. This is because the goal of a network-based evasion is to bypass the

network component of a BPS.

Successful attackers can use such evasions to attack assets such as printers, file shares, and mobile phones that do

not have endpoint protection installed. This test was conducted using a custom HTTP server on Kali Linux operating

system (version 2017.2 with Kernel 4.12 64-bit). The clients were running a 32-Bit Windows 7 (Enterprise Service

Pack 1) and Internet Explorer 11 (version 11.0.96000.17843). During testing, we layered evasions, on occasion

combining obfuscation methods. Over 190 different combinations of evasions were used and as many as 15

different layers of obfuscation.

Figure 8 – Evasion Overview Scores

Evasion techniques are a means of disguising and

modifying attacks at the point of delivery to avoid

detection and blocking by security solutions.

Failure of a security device to correctly identify a

specific type of evasion potentially allows an

attacker to use an entire class of exploits for which

the device is assumed to have protection. Many of

the techniques used in this test have been widely

known for years and should be considered

minimum requirements.

Protection Resiliency

HTML Obfuscation

HTTP Compression

HTTP Obfuscation

TCP segmentation

IP fragmentation

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
e

tw
o

rk
 E

va
si

o
n

s

Network Evasions

 IP fragmentation 100.0%

TCP segmentation 100.0%

HTTP Obfuscation 92.5%

HTTP Compression 66.7%

HTML Obfuscation 63.4%

Protection Resiliency 95.5%

The Fortinet FortiGate 500E v6.0.3 + FortiSandbox

v6.0.3 blocked 103 of the 119 evasions it was tested

against. Script obfuscations and resiliency are included

in the security effectiveness score since these types or

attacks are considered “complex evasions”

(HTML/JavaScript/VBScript) and require real-time

code analysis in order to determine whether a function

is legitimate or obfuscating an attack. For details,

please see Appendix: Product Scorecard.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

16

IP Fragmentation

The Internet uses the Internet Protocol (IP) to transmit and route traffic from one computer to another. IP is

connectionless, meaning that it transmits data to a remote host without knowing whether or not the host is ready

to exchange the data. IP does not have any error detection/correction facility, and it does not guarantee the

receipt of the datagrams.

There is always a possibility that a datagram will be lost or corrupted during transmission. The IP datagram is

forwarded in “as-is” condition to the Transmission Control Protocol (TCP) layer at the receiving end. The TCP then

has to make a request for datagrams that are either missing or contain errors.

IP Fragmentation Result

Small IP fragments; overlapping duplicate fragments with garbage payloads PASS

Small IP fragments in reverse order PASS

Small IP fragments in random order PASS

Small IP fragments; delay first fragment PASS

Small IP fragments in reverse order; delay last fragment PASS

Small IP fragments; interleave chaff after (invalid IP options) PASS

Small IP fragments in random order; interleave chaff sandwich (invalid IP options) PASS

Small IP fragments in random order; interleave chaff sandwich (invalid IP options); delay random fragment PASS

Small IP fragments; interleave chaff before (invalid IP options); DSCP value 16 PASS

Small IP fragments in random order; interleave chaff after (invalid IP options); delay random fragment; DSCP

value 34
PASS

Figure 9 – IP Fragmentation

Among other capabilities, IP includes support for the

fragmentation of larger packets into multiple smaller packets.

When one computer uses IP to communicate with another, the

instructions for how to put the fragments back together are

contained within the IP Header. IP fragmentation is the process

of breaking up a single IP packet into multiple packets of smaller

size. This happens all the time on networks and is in itself not an indicator of an attack. Therefore, inline security

solutions conducting deep inspection must reassemble IP fragments before inspection can occur. If the programmers

developing the product made a mistake (and developers make mistakes all the time) reassembling IP packets, an

attacker may be able to evade detection by fragmenting the IP packets in any number of ways, such as sending them

in reverse order, delaying the first fragment, or sending overlapping duplicate fragments with garbage payload.

The Fortinet FortiGate 500E v6.0.3 +

FortiSandbox v6.0.3 blocked all 10 of the

samples it was tested against.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

17

TCP Segmentation

TCP Segmentation Result

Small TCP segments; overlapping duplicate segments with garbage payloads PASS

Small TCP segments in reverse order PASS

Small TCP segments in random order PASS

Small TCP segments; delay first segment PASS

Small TCP segments in reverse order; delay last segment PASS

Small TCP segments; interleave chaff after (invalid TCP checksums); delay first segment PASS

Small TCP segments in random order; interleave chaff before (invalid TCP checksums); delay random segment PASS

Small TCP segments in random order; interleave chaff sandwich (out-of-window sequence numbers); TCP MSS

option
PASS

Small TCP segments in random order; interleave chaff after (requests to resynch sequence numbers mid-

stream); TCP window scale option
PASS

Small TCP segments in random order; interleave chaff sandwich (requests to resynch sequence numbers mid-

stream); TCP window scale option; delay first segment
PASS

Small overlapping TCP segments PASS

Small TCP segments; small IP fragments PASS

Small TCP segments; small IP fragments in reverse order PASS

Small TCP segments in random order; small IP fragments PASS

Small TCP segments; small IP fragments in random order PASS

Small TCP segments in random order; small IP fragments in reverse order PASS

Small TCP segments in random order; interleave chaff sandwich (invalid TCP checksums); small IP fragments in

reverse order; interleave chaff after (invalid IP options)
PASS

Small TCP segments; interleave chaff after (invalid TCP checksums); delay last segment; small IP fragments;

interleave chaff before (invalid IP options)
PASS

Small TCP segments; interleave chaff sandwich (invalid TCP checksums); small IP fragments; interleave chaff

sandwich (invalid IP options); delay last fragment
PASS

Small TCP segments in random order; interleave chaff before (out-of-window sequence numbers); TCP MSS

option; small IP fragments in random order; interleave chaff before (invalid IP options); delay random fragment
PASS

Small TCP segments in random order; interleave chaff sandwich (requests to resynch sequence numbers mid-

stream); TCP window scale option; delay first segment; small IP fragments
PASS

Small overlapping TCP segments; small fragments PASS

Small overlapping TCP segments; delay last segment; small fragments; delay last fragment PASS

Figure 10 – TCP Segmentation

TCP is one of the main protocols that run atop of the IP.

Where IP is stateless, TCP is stateful, meaning that it tracks

what has been sent and received via the TCP/IP. Just as IP

can be fragmented, so too can TCP. When one computer

uses TCP/IP to communicate with another, the instructions

for how to put the TCP segments back together are contained within the TCP Header. This is common within network

The Fortinet FortiGate 500E v6.0.3 +

FortiSandbox v6.0.3 blocked all 23 of the TCP

segmentation evasions it was tested against.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

18

traffic and is not itself an indicator of an attack. Therefore, inline security solutions conducting deep inspection must

reassemble TCP streams before inspection can occur. If the programmers developing the product made a mistake

reassembling TCP streams, an attacker may be able to evade detection by segmenting the TCP streams in any

number of ways, such as sending them in reverse order, delaying the first segment, or sending overlapping duplicate

segments with garbage payload. In addition, an attacker can combine evasion techniques both segmenting TCP and

fragmenting IP.

HTTP Obfuscation

HTTP Obfuscation Result

Declared HTTP/0.9 response; but includes response headers; chunking declared but served without chunking PASS

HTTP/1.1 chunked response with chunk sizes preceded by multiple zeros (hex '30') PASS

HTTP/1.1 chunked response with chunk sizes followed by backspace (hex '08') FAIL

HTTP/1.1 chunked response with chunk sizes followed by end of text (hex '03') FAIL

HTTP/1.1 chunked response with chunk sizes followed by escape (hex '1b') FAIL

HTTP/1.1 chunked response with chunk sizes followed by null (hex '00') PASS

HTTP/1.1 chunked response with chunk sizes followed by a space (hex '20') then a zero (hex '30') PASS

HTTP/1.1 chunked response with final chunk size of

'00' (rather

than '0')

PASS

HTTP/1.1 response with line folded transfer-encoding header declaring chunking ('Transfer-Encoding: ' followed

by CRLF (hex '0d 0a') followed by 'chunked' followed by CRLF (hex '0d 0a'); served without chunking
PASS

HTTP/1.1 response with transfer-encoding header declaring chunking with lots of whitespace ('Transfer-

Encoding:' followed by 8000 spaces (hex '20' * 8000) followed by 'chunked' followed by CRLF (hex '0d 0a');

served chunked

PASS

HTTP/1.0 response declaring chunking; served without chunking PASS

HTTP/1.0 response declaring chunking with invalid content-length header; served without chunking PASS

HTTP/1.1 response with "\tTransfer-Encoding: chunked"; served chunked PASS

HTTP/1.1 response with "\tTransfer-Encoding: chonked" after custom header line with "chunked" as value;

served without chunking
PASS

HTTP/1.1 response with header with no field name and colon+junk string; followed by '\tTransfer-Encoding:

chunked' header; followed by custom header; served chunked
PASS

HTTP/1.1 response with "\r\rTransfer-Encoding: chunked"; served chunked PASS

HTTP/1.1 response with using single "\n"'s instead of "\r\n"'s; chunked PASS

HTTP/1.1 response with \r\n\r\n before first header; chunked PASS

HTTP/1.1 response with "SIP/2.0 200 OK\r\n" before status header; chunked PASS

HTTP/1.1 response with space+junk string followed by \r\n before first header; chunked PASS

HTTP/1.1 response with junk string before status header; chunked PASS

HTTP/1.1 response with header end \n\014\n\n; chunked PASS

HTTP/1.1 response with header end \r\n\016\r\n\r\n; chunked PASS

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

19

HTTP/1.1 response with header end \n\r\r\n; chunked PASS

HTTP/1.1 response with header end \n\017\018\n\n; chunked PASS

HTTP/1.1 response with header end \n\030\n\019\n\n; chunked PASS

HTTP/1.1 response with status code -203.030; with message-body; chunked PASS

HTTP/1.1 response with status code 402; with message-body; chunked PASS

HTTP/1.1 response with status code 403; with message-body; chunked PASS

HTTP/1.1 response with status code 406; with message-body; chunked PASS

HTTP/1.1 response with status code 505; with message-body; chunked PASS

HTTP/1.1 chunked response with no status indicated PASS

No status line; chunking indicated; served unchunked PASS

HTTP/1.1 response with invalid content-length header size declaration followed by space and null (hex '20 00') PASS

HTTP/1.01 declared; served chunked PASS

HTTP/01.1 declared; served chunked PASS

HTTP/2.B declared; served chunked PASS

HTTP/9.-1 declared; served chunked PASS

Double Transfer-Encoding: first empty; last chunked. Served with invalid content-length; not chunked. PASS

Relevant headers padded by preceding with hundreds of random custom headers PASS

Figure 11 – HTTP Obfuscation

Web browsers request content from servers over HTTP

using the ASCII character-set. HTTP encoding replaces

unsafe non-ASCII characters with a “%” followed by two

hexadecimal digits. Web servers and clients understand

how to decode the request and responses. However, this

mechanism can be abused to circumvent protection that is looking to match specific strings of characters. Sample

methods include chunked encoding and header folding.

Chunked encoding allows the server to break a document into smaller chunks and transmit the chunks individually.

The server needs only to specify the size of each chunk before it is transmitted and then indicate when the last chunk

has been transmitted. Since chunked encoding intersperses arbitrary numbers (chunk sizes) with the elements of

the original document, it can be used to greatly change the appearance of the content as observed “on the wire”

during transmission. In addition, the server can choose to break the document into chunks at arbitrary points. This

makes it difficult to reliably identify the original HTML content from the raw data on the network.

The Fortinet FortiGate 500E v6.0.3 +

FortiSandbox v6.0.3 blocked 37 of the 40 HTTP

obfuscation evasions it was tested against.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

20

HTTP Compression

Per RFC 2616, the HTTP protocol allows the server to use several compression methods. These compression

methods not only improve performance but, in many circumstances, they completely change the characteristic

size and appearance of HTML documents.

HTTP Compression Result

HTTP/1.1 response compressed with gzip; invalid content-length PASS

HTTP/1.1 response declaring gzip followed by junk string; invalid content-length; served uncompressed PASS

HTTP/1.1 response compressed with deflate; invalid content-length PASS

HTTP/1.1 response declaring deflate followed by junk string; invalid content-length; served uncompressed PASS

HTTP/1.1 response with content-encoding declaration of gzip followed by space+junk string; served

uncompressed and chunked
PASS

HTTP/1.1 response with content-encoding header for deflate; followed by content-encoding header for gzip;

served uncompressed and chunked
PASS

HTTP/1.1 chunked response with chunk sizes preceded by multiple zeros (hex '30'); compressed with gzip PASS

HTTP/1.1 chunked response with chunk sizes followed by backspace (hex '08'); compressed with gzip FAIL

HTTP/1.1 chunked response with chunk sizes followed by end of text (hex '03'); compressed with gzip FAIL

HTTP/1.1 chunked response with chunk sizes followed by escape (hex '1b'); compressed with gzip FAIL

HTTP/1.1 chunked response with chunk sizes followed by null (hex '00'); compressed with gzip PASS

HTTP/1.1 chunked response with chunk sizes followed by a space (hex '20') then a zero (hex '30'); compressed

with gzip
PASS

HTTP/1.1 chunked response with chunk sizes preceded by multiple zeros (hex '30'); compressed with deflate PASS

HTTP/1.1 chunked response with chunk sizes followed by backspace (hex '08'); compressed with deflate FAIL

HTTP/1.1 chunked response with chunk sizes followed by end of text (hex '03'); compressed with deflate FAIL

HTTP/1.1 chunked response with chunk sizes followed by escape (hex '1b'); compressed with deflate FAIL

HTTP/1.1 chunked response with chunk sizes followed by null (hex '00'); compressed with deflate PASS

HTTP/1.1 chunked response with chunk sizes followed by a space (hex '20') then a zero (hex '30'); compressed

with deflate PASS

Figure 12 – HTTP Compression

Small changes in the original document can greatly change the final

appearance of the compressed document. This property of these

algorithms could be used to obfuscate hostile content for the purpose

of evading detection. The deflate compression method is a Lempel-Ziv

coding (LZ77), specified in RFC 1951. The gzip compression method is

specified in RFC 1952.

The Fortinet FortiGate 500E v6.0.3

+ FortiSandbox v6.0.3 blocked 12

of the 18 HTTP compression

evasions it was tested against.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

21

HTML Obfuscation

HTML is a file type that a web server transmits via HTTP to a web browser, which the browser then renders for the

user. So, whereas HTTP obfuscations evade detection by manipulating the transmission, HTML obfuscations are

contained within the content itself.

HTML Obfuscation2 Result

js-binary-obfuscation* FAIL

babel-minify* PASS

closure* PASS

code-protect* FAIL

confusion* FAIL

jfogs* FAIL

jfogs-reverse* FAIL

jjencode* PASS

jsbeautifier* PASS

jsmin* PASS

js-obfuscator* FAIL

qzx-obfuscator* FAIL

chunked and gzip compressed js-binary-obfuscation* FAIL

chunked and deflate compressed js-binary-obfuscation* FAIL

UTF-8 encoding PASS

UTF-8 encoding with BOM PASS

UTF-16 encoding with BOM PASS

UTF-8 encoding; no http or html declarations PASS

UTF-8 encoding with BOM; no http or html declarations PASS

UTF-16 encoding with BOM; no http or html declarations PASS

UTF-16-LE encoding without BOM FAIL

UTF-16-BE encoding without BOM FAIL

UTF-16-LE encoding without BOM; no http or html declarations FAIL

UTF-16-BE encoding without BOM; no http or html declarations FAIL

UTF-7 encoding PASS

UTF-8 encoding PASS

UTF-8 encoding PASS

2 Not included in the evasion calculations

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

22

EICAR string included at top of HTML PASS

Hex encoded script decoded using JavaScript unescape* PASS

Unicode encoded script decoded using JavaScript unescape* FAIL

Hex encoded script as variable decoded using JavaScript unescape* PASS

Unicode encoded script as variable decoded using JavaScript unescape* FAIL

padded with <=5MB PASS

padded with <=25MB PASS

padded with >25MB PASS

padded with <=5MB; chunked and compressed with gzip PASS

padded with <=25MB; chunked and compressed with gzip PASS

padded with >25MB; chunked and compressed with gzip PASS

padded with <=5MB; chunked and compressed with deflate PASS

padded with <=25MB; chunked and compressed with deflate PASS

padded with >25MB; chunked and compressed with deflate PASS

Figure 13 – HTML Obfuscation

It is important that security solutions charged with

protecting end systems correctly interpret HTML content

and have semantic or syntactic understanding of the data

they are analyzing. Otherwise, they could be vulnerable to

evasions through the use of redundant, but equivalent,

alternative representations of malicious content. For

example, an attacker can encode HTML content using different UTF encoding. A security product that does not

properly decode the content will miss the attack. This test suite uses malicious HTML content that is transferred

from web server to web browser.

The Fortinet FortiGate 500E v6.0.3 +

FortiSandbox v6.0.3 blocked 26 of the 41 HTML

obfuscation evasions it was tested against.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

23

Protection Resiliency

Different variations of an exploit can be used to exploit a vulnerability. And many security vendors claim their

solutions provide vulnerability-based protection that will block exploitation of vulnerabilities regardless of the

specific exploit. A product that is able to defend against multiple exploit variations provides resilient protection.

Protection Resiliency3 Result

res-esc-001 Hex encoded VBScript decoded using JavaScript unescape* PASS

res-esc-002 Hex encoded VBScript as variable decoded using JavaScript unescape* PASS

res-sep-001 External VBScript file loaded from HTML* PASS

res-sep-002 Multiple VBScript files loaded from HTML* PASS

res-sep-003 Multiple VBScript files loaded with external JavaScript file* PASS

res-nb-001 VBScript interspersed randomly with null bytes* PASS

res-pay-001 nishang bind shell obfuscated with Unicorn* PASS

res-pay-002 native Unicorn generated bind shell* PASS

res-pay-003 nishang bind shell obfuscated with PowerSploit's Out-EncodedCommand* PASS

res-pay-004 Veil Ordnance bind shell shellcode dropped into PowerSploit's Invoke-Shellcode; then

obfuscated with PowerSploit's Out-EncodedCommand*
PASS

res-pay-005 custom bind shell shellcode obfuscated with Invoke-Obfuscation* PASS

res-pay-006 custom bind shell shellcode with password prompt obfuscated with Invoke-Obfuscation* PASS

res-mth-mrg-ord-pay-spl-chr-wsp-001 numeric values/equations modified and/or inserted; hexadecimal

values replaced with decimal values; combine 'myarray' instantiation into single line; combine powershell

command into single line; Remove runmumaa and add to setnotsafemode function; move setnotsafemode

function to bottom of script; Some strings split with "+" and "&"; some lines split with "_"; some script

commands/strings converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples

of each; nishang bind shell obfuscated with Unicorn*

PASS

res-mth-mrg-ord-pay-spl-chr-ws-pch-001 numeric values/equations modified and/or inserted; hexadecimal

values replaced with decimal values; combine 'myarray' instantiation into single line; combine powershell

command into single line; Remove runmumaa and add to setnotsafemode function; move setnotsafemode

function to bottom of script; Some strings split with "+" and "&"; some lines split with "_"; some script

commands/strings converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples

of each; nishang bind shell obfuscated with Unicorn; chunked*

PASS

res-mth-mrg-ord-pay-spl-chr-wsp-002 numeric values/equations modified and/or inserted; hexadecimal

values replaced with decimal values; combine 'myarray' instantiation into single line; combine powershell

command into single line; Remove runmumaa and add to setnotsafemode function; move setnotsafemode

function to bottom of script; Some strings split with "+" and "&"; some lines split with "_"; some script

commands/strings converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples

of each; native Unicorn generated bind shell*

PASS

res-mth-mrg-ord-pay-spl-chr-wsp-cg-002 numeric values/equations modified and/or inserted; hexadecimal

values replaced with decimal values; combine 'myarray' instantiation into single line; combine powershell

command into single line; Remove runmumaa and add to setnotsafemode function; move setnotsafemode

PASS

3 Not included in the evasion calculations

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

24

function to bottom of script; Some strings split with "+" and "&"; some lines split with "_"; some script

commands/strings converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples

of each; native Unicorn generated bind shell; chunked and gzip compressed*

res-mth-mrg-ord-pay-spl-chr-wsp-003 numeric values/equations modified and/or inserted; hexadecimal

values replaced with decimal values; combine 'myarray' instantiation into single line; combine powershell

command into single line; Remove runmumaa and add to setnotsafemode function; move setnotsafemode

function to bottom of script; Some strings split with "+" and "&"; some lines split with "_"; some script

commands/strings converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples

of each; nishang bind shell obfuscated with PowerSploit's Out-EncodedCommand*

PASS

res-mth-mrg-ord-pay-spl-chr-wsp-cd-003 numeric values/equations modified and/or inserted; hexadecimal

values replaced with decimal values; combine 'myarray' instantiation into single line; combine powershell

command into single line; Remove runmumaa and add to setnotsafemode function; move setnotsafemode

function to bottom of script; Some strings split with "+" and "&"; some lines split with "_"; some script

commands/strings converted to series of chr()/Clng/&H using online vbscript obfuscator; both spaces and

linefeeds replaced with multiples of each; nishang bind shell obfuscated with PowerSploit's Out-

EncodedCommand; chunked and deflate compressed*

PASS

res-mth-mrg-ord-pay-spl-chr-wsp-004 numeric values/equations modified and/or inserted; hexadecimal

values replaced with decimal values; combine 'myarray' instantiation into single line; combine powershell

command into single line; Remove runmumaa and add to setnotsafemode function; move setnotsafemode

function to bottom of script; Some strings split with "+" and "&"; some lines split with "_"; some script

commands/strings converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples

of each; Veil Ordnance bind shell shellcode dropped into PowerSploit's Invoke-Shellcode; then obfuscated

with PowerSploit's Out-EncodedCommand*

PASS

res-mth-mrg-ord-pay-spl-chr-wsp-ch-004 numeric values/equations modified and/or inserted; hexadecimal

values replaced with decimal values; combine 'myarray' instantiation into single line; combine powershell

command into single line; Remove runmumaa and add to setnotsafemode function; move setnotsafemode

function to bottom of script; Some strings split with "+" and "&"; some lines split with "_"; some script

commands/strings converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples

of each; Veil Ordnance bind shell shellcode dropped into PowerSploit's Invoke-Shellcode; then obfuscated

with PowerSploit's Out-EncodedCommand; chunked*

PASS

res-mth-mrg-ord-pay-spl-chr-wsp-005 numeric values/equations modified and/or inserted; hexadecimal

values replaced with decimal values; combine 'myarray' instantiation into single line; combine powershell

command into single line; Remove runmumaa and add to setnotsafemode function; move setnotsafemode

function to bottom of script; Some strings split with "+" and "&"; some lines split with "_"; some script

commands/strings converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples

of each; custom bind shell shellcode obfuscated with Invoke-Obfuscation*

PASS

res-mth-mrg-ord-pay-spl-chr-wsp-cg-005 numeric values/equations modified and/or inserted; hexadecimal

values replaced with decimal values; combine 'myarray' instantiation into single line; combine powershell

command into single line; Remove runmumaa and add to setnotsafemode function; move setnotsafemode

function to bottom of script; Some strings split with "+" and "&"; some lines split with "_"; some script

commands/strings converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples

of each; custom bind shell shellcode obfuscated with Invoke-Obfuscation; chunked and gzip compressed*

PASS

res-mth-mrg-ord-pay-splc-hrw-sp-006 numeric values/equations modified and/or inserted; hexadecimal

values replaced with decimal values; combine 'myarray' instantiation into single line; combine powershell

command into single line; Remove runmumaa and add to setnotsafemode function; move setnotsafemode

function to bottom of script; Some strings split with "+" and "&"; some lines split with "_"; some script

commands/strings converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples

of each; custom bind shell shellcode with password prompt obfuscated with Invoke-Obfuscation*

PASS

res-mth-mrg-ord-pay-spl-chr-wsp-cd-006 numeric values/equations modified and/or inserted; hexadecimal

values replaced with decimal values; combine 'myarray' instantiation into single line; combine powershell

command into single line; Remove runmumaa and add to setnotsafemode function; move setnotsafemode

PASS

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

25

function to bottom of script; Some strings split with "+" and "&"; some lines split with "_"; some script

commands/strings converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples

of each; custom bind shell shellcode with password prompt obfuscated with Invoke-Obfuscation; chunked

and deflate compressed*

res-ren-chr-wsp-pay-mth-spl-001 procedures and variables renamed; some script commands/strings

converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; numeric

values/equations modified and/or inserted; hexadecimal values replaced with decimal values; Some strings

split with "+" and "&"; some lines split with "_"; nishang bind shell obfuscated with Unicorn*

PASS

res-ren-chr-wsp-pay-mth-spl-ch-001 procedures and variables renamed; some script commands/strings

converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; numeric

values/equations modified and/or inserted; hexadecimal values replaced with decimal values; Some strings

split with "+" and "&"; some lines split with "_"; nishang bind shell obfuscated with Unicorn; chunked*

PASS

res-ren-chr-wsp-pay-mth-spl-002 procedures and variables renamed; some script commands/strings

converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; numeric

values/equations modified and/or inserted; hexadecimal values replaced with decimal values; Some strings

split with "+" and "&"; some lines split with "_"; native Unicorn generated bind shell*

PASS

res-ren-chr-wsp-pay-mth-spl-cg-002 procedures and variables renamed; some script commands/strings

converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; numeric

values/equations modified and/or inserted; hexadecimal values replaced with decimal values; Some strings

split with "+" and "&"; some lines split with "_"; native Unicorn generated bind shell; chunked and gzip

compressed*

PASS

res-ren-chr-wsp-pay-mth-spl-003 procedures and variables renamed; some script commands/strings

converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; numeric

values/equations modified and/or inserted; hexadecimal values replaced with decimal values; Some strings

split with "+" and "&"; some lines split with "_"; nishang bind shell obfuscated with PowerSploit's Out-

EncodedCommand*

PASS

res-ren-chr-wsp-pay-mth-spl-cd-003 procedures and variables renamed; some script commands/strings

converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; numeric

values/equations modified and/or inserted; hexadecimal values replaced with decimal values; Some strings

split with "+" and "&"; some lines split with "_"; nishang bind shell obfuscated with PowerSploit's Out-

EncodedCommand; chunked and deflate compressed*

PASS

res-ren-chr-wsp-pay-mth-spl-004 procedures and variables renamed; some script commands/strings

converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; numeric

values/equations modified and/or inserted; hexadecimal values replaced with decimal values; Some strings

split with "+" and "&"; some lines split with "_"; Veil Ordnance bind shell shellcode dropped into

PowerSploit's Invoke-Shellcode; then obfuscated with PowerSploit's Out-EncodedCommand*

PASS

res-ren-chr-wsp-pay-mth-spl-ch-004 procedures and variables renamed; some script commands/strings

converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; numeric

values/equations modified and/or inserted; hexadecimal values replaced with decimal values; Some strings

split with "+" and "&"; some lines split with "_"; Veil Ordnance bind shell shellcode dropped into

PowerSploit's Invoke-Shellcode; then obfuscated with PowerSploit's Out-EncodedCommand; chunked*

PASS

res-ren-chr-wsp-pay-mth-spl-005 procedures and variables renamed; some script commands/strings

converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; numeric

values/equations modified and/or inserted; hexadecimal values replaced with decimal values; Some strings

split with "+" and "&"; some lines split with "_"; custom bind shell shellcode obfuscated with Invoke-

Obfuscation*

PASS

res-ren-chr-wsp-pay-mth-spl-cg-005 procedures and variables renamed; some script commands/strings

converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; numeric

values/equations modified and/or inserted; hexadecimal values replaced with decimal values; Some strings

split with "+" and "&"; some lines split with "_"; custom bind shell shellcode obfuscated with Invoke-

Obfuscation; chunked and gzip compressed*

PASS

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

26

res-ren-chr-wsp-pay-mth-spl-006 procedures and variables renamed; some script commands/strings

converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; numeric

values/equations modified and/or inserted; hexadecimal values replaced with decimal values; Some strings

split with "+" and "&"; some lines split with "_"; custom bind shell shellcode with password prompt

obfuscated with Invoke-Obfuscation*

PASS

res-ren-chr-wsp-pay-mth-spl-cd-006 procedures and variables renamed; some script commands/strings

converted to series of chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; numeric

values/equations modified and/or inserted; hexadecimal values replaced with decimal values; Some strings

split with "+" and "&"; some lines split with "_"; custom bind shell shellcode with password prompt

obfuscated with Invoke-Obfuscation; chunked and deflate compressed*

PASS

res-wsp-001 both spaces and linefeeds replaced with multiples of each* PASS

res-ren-001 procedures and variables renamed* PASS

res-mth-001 numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal

values*
PASS

res-chr-001 change all chr() to chrw() and vice versa where possible* PASS

res-chr-002 change chr() and chrw() to chrb()* PASS

res-chr-003 some script commands/strings converted to series of chr()/Clng/&H using online vbscript

obfuscator*
PASS

res-pay-007 Veil Ordnance bind shell shellcode dropped into PowerSploit's Invoke-Shellcode; then

obfuscated with PowerSploit's Out-EncodedCommand*
PASS

res-pay-008 Use wscript to call original payload (PoshRat method) * PASS

res-pay-009 nishang bind shell obfuscated with Unicorn* PASS

res-ord-001 Remove runmumaa and add to setnotsafemode function; move setnotsafemode function to

bottom of script*
PASS

res-spl-001 Some strings split with "+" and "&"; some lines split with "_"* PASS

res-mrg-001 combine 'myarray' instantiation into single line; combine PowerShell command into single line* PASS

res-ren-chr-001 Combination of techniques used in res-ren-001 and res-chr-003* PASS

res-ren-chr-wsp-001 Combination of techniques used in res-ren-001; res-chr-003; and res-wsp-001* PASS

res-ren-chr-wsp-pay-001 Combination of techniques used in res-ren-001; res-chr-003; res-wsp-001; and res-

pay-004*
PASS

res-ren-pay-001 Combination of techniques used in res-ren-001 and res-pay-007* PASS

res-ren-chr-wsp-pay-mth-001 Combination of techniques used in res-ren-001; res-chr-003; res-wsp-001; res-

pay-007; and res-mth-001*
PASS

res-mth-mrg-001 Combination of techniques used in res-mth-001 and res-mrg-001* PASS

res-mth-mrg-ord-001 Combination of techniques used in res-mth-001; res-mrg-001; and res-ord-001* PASS

res-mth-mrg-ord-pay-001 Combination of techniques used in res-mth-001; res-mrg-001; res-ord-001; and

res-pay-008*
PASS

res-mth-mrg-ord-pay-spl-001 Combination of techniques used in res-mth-001; res-mrg-001; res-ord-001;

res-pay-008; and res-spl-001*
PASS

res-mth-mrg-ord-pay-spl-chr-001 Combination of techniques used in res-mth-001; res-mrg-001; res-ord-001;

res-pay-008; res-spl-001; and res-chr-003*
PASS

res-mth-mrg-ord-pay-spl-chr-002 Combination of techniques used in res-mth-001; res-mrg-001; res-ord-001;

res-pay-008; res-spl-001; and res-chr-003; plus removal of all CLng's*
PASS

res-mth-mrg-ord-pay-chr-001 Combination of techniques used in res-mth-001; res-mrg-001; res-ord-001;

res-pay-008; and res-chr-003*
PASS

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

27

res-mth-mrg-ord-pay-spl-chr-wsp-007 Combination of techniques used in res-mth-001; res-mrg-001; res-ord-

001; res-pay-008; res-spl-001; res-chr-003; res-wsp-001; plus removal of all CLng's*
PASS

res-mth-mrg-ord-pay-spl-chr-wsp-008 Combination of techniques used in res-mth-001; res-mrg-001; res-ord-

001; res-pay-009; res-spl-001; res-chr-003; res-wsp-001; res-ren-001; plus removal of all CLng's; replace

'LANGUAGE="VBScript"' with 'type="text/vbScript"'*

PASS

combo-001 UTF-8 encoding; HTTP/1.1 chunked response with chunk sizes preceded by multiple zeros (hex

'30'); small TCP segments; small IP fragments; padding
PASS

combo-002 UTF-8 encoding with BOM; HTTP/1.1 chunked response with chunk sizes followed by backspace

(hex '08'); small TCP segments; small IP fragments in reverse order; padding
FAIL

combo-003 UTF-16 encoding with BOM; HTTP/1.1 chunked response with chunk sizes followed by end of

text (hex '03'); small TCP segments in random order; small IP fragments; padding
FAIL

combo-004 UTF-8 encoding; no http or html declarations; HTTP/1.1 chunked response with chunk sizes

followed by escape (hex '1b'); small TCP segments; small IP fragments in random order; padding
FAIL

combo-005 UTF-8 encoding with BOM; no http or html declarations; HTTP/1.1 chunked response with chunk

sizes followed by null (hex '00'); small TCP segments in random order; small IP fragments in reverse order;

padding

PASS

Figure 14 – Protection Resiliency

To confirm the baseline use case, we exploited a known

vulnerability leveraging a known exploit. Next, we

introduced the security product and attempted to exploit

the same vulnerability using the same exploit. The expected

behavior was confirmed, namely that the exploit was

blocked by the BPS. Finally, the experimental use case was run, during which we attempted to exploit the same

vulnerability using previously unseen variations of that exploit. A security product with resilient protection will be

able to block different variations of the same exploit.

The Fortinet FortiGate 500E v6.0.3 +

FortiSandbox v6.0.3 blocked 64 of the 67

resiliency samples it was tested against.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

28

Resistance to Binary Evasions

Cybercriminals deploy evasions to disguise and modify attacks at the point of delivery in order to avoid detection

by security solutions. Given that BPS employ a number of network and endpoint protection technologies,

bypassing any one of its components means that an attacker has likely bypassed all defenses. Therefore, it is

imperative that all of the BPS components can correctly handle evasions. Attackers can modify attacks and

malicious code in a number of ways order to evade detection.

Packers

Packers are primarily used to obfuscate and “protect” compiled binaries. Along with the compressed/obfuscated

data (the original binary in obfuscated form), they contain a “stub,” which, upon execution, de-obfuscates the binary

and jumps to its restored entry point. Malware authors typically use packing techniques to obfuscate binaries so

they cannot be easily analyzed. We tested the BPS’ capability to protect against binary evasions using 26 victim

machines running 64-bit Windows 7 (version 6.1 (Build 7601: SP1) with Internet Explorer 11 (version

11.0.9600.17843 – Update version 11.0.20).

Packers Sample Name Action on Download Action on Execution

Anskaya DNA_Sample-C.exe Blocked

Anskaya DNA_Sample-E.exe Blocked

Anskaya DNA_Sample-F.exe Blocked

Exestealth Sample-C.exe Blocked

Krypton Sample-C.exe Blocked

Winkypt Sample-C.exe Blocked

Winupack Sample-A.exe Blocked

excalibur Sample-C.exe Blocked

exefog Sample-C.exe Blocked

fearzpacker Sample-A.exe Blocked

fearzpacker Sample-E.exe Blocked

fishPE Sample-C.exe Blocked

fishPE Sample-F.exe Blocked

hidepx Sample-B.exe Blocked

hidepx Sample-F.exe Blocked

kkrunchy Sample-A.exe Blocked

kkrunchy Sample-C.exe Blocked

mew Sample-F.exe Blocked

petite24 Sample-A.exe Blocked

petite24 Sample-C.exe Blocked

telock Sample-C.exe Blocked

upx Sample-A.exe Blocked

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

29

upx Sample-B.exe Blocked

yc Sample-C.exe Blocked

yc Sample-D.exe Blocked

yc Sample-F.exe Blocked

Figure 15 – Packer Evasion Results

To establish the baseline use case, we downloaded and

executed well-known malware to confirm it functioned

as expected in the test harness. Next, we introduced,

the security product and attempted to attempted to

download and execute the known malware samples.

The expected behavior was confirmed and recorded, namely that the malware was blocked or detected by the

security product. Finally, the experimental use case was run, during which we attempted to download and execute

the same known malware samples they had packed using commercially available packers. The results were recorded.

Compressors

Compressors are primarily used to reduce the size of a file. They are also used by attackers to obfuscate malware

since compressed files do not look the same to pattern-matching engines. As such, a security product must have

the matching compression algorithm in order to detect malware that has been compressed. Malware authors

typically use compression techniques to obfuscate binaries so they cannot be easily analyzed.

We tested the capability of the BPS to protect against binary evasions using 64 victim machines running 64-bit

Windows 7 (version 6.1 (Build 7601: SP1) with Internet Explorer 11 (version 11.0.9600.17843 – Update version

11.0.20).

Note: Failure to detect compressed malware is a potential security risk since it enables attackers to move content

laterally or exfiltrate data.

Compressors Sample Name Action on Download Action on Manual Scan

7zip\7zip\ Sample-A Blocked

7zip\7zip\ Sample-B Blocked

7zip\7zip\ Sample-C Blocked

7zip\7zip\ Sample-D Blocked

7zip\7zip\ Sample-E Blocked

7zip\7zip\ Sample-F Blocked

7zip\bzip2\ Sample-A Blocked

7zip\bzip2\ Sample-B Blocked

7zip\bzip2\ Sample-C Blocked

7zip\bzip2\ Sample-D Blocked

7zip\bzip2\ Sample-E Blocked

7zip\bzip2\ Sample-F Blocked

7zip\gzip\ Sample-A Blocked

The Fortinet FortiGate 500E v6.0.3 + FortiClient

v6.0.3.6219 + FortiSandbox v6.0.3 blocked all 26

of the packers it was tested against.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

30

7zip\gzip\ Sample-B Blocked

7zip\gzip\ Sample-C Blocked

7zip\gzip\ Sample-D Blocked

7zip\gzip\ Sample-E Blocked

7zip\gzip\ Sample-F Blocked

7zip\xz\ Sample-A Blocked

7zip\xz\ Sample-B Blocked

7zip\xz\ Sample-C Blocked

7zip\xz\ Sample-D Blocked

7zip\xz\ Sample-E Blocked

7zip\xz\ Sample-F Blocked

ALZIP\ Sample-A Missed

ALZIP\ Sample-B Missed

ALZIP\ Sample-C Missed

ALZIP\ Sample-D Missed

ALZIP\ Sample-E Missed

ALZIP Sample-F Missed

AshampooZip Sample-A Blocked

AshampooZip\ Sample-B Blocked

AverZip\ Sample-B Blocked

AverZip\ Sample-C Blocked

Bandizip\ Sample-C Blocked

Bandizip\ Sample-D Blocked

FilZip\ Sample-D Blocked

FilZip\ Sample-E Blocked

KuaiZip\ Sample-A Missed

KuaiZip\ Sample-B Missed

KuaiZip\ Sample-C Missed

KuaiZip\ Sample-D Missed

KuaiZip\ Sample-E Missed

KuaiZip\ Sample-F Missed

MuZip\ Sample-E Blocked

MuZip\ Sample-F Blocked

PicoZip\ Sample-A Blocked

PicoZip\ Sample-B Blocked

PowerArchiver\ Sample-A Blocked

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

31

PowerArchiver\ Sample-B Blocked

PowerArchiver\ Sample-C Blocked

PowerArchiver\ Sample-D Blocked

PowerArchiver\ Sample-E Blocked

PowerArchiver\ Sample-F Blocked

QuickZip\ Sample-C Blocked

QuickZip\ Sample-D Blocked

SimplyZip\ Sample-A Missed

SimplyZip\ Sample-B Missed

SimplyZip\ Sample-C Missed

SimplyZip\ Sample-D Missed

SimplyZip\ Sample-E Missed

SimplyZip\ Sample-F Missed

ZipitFast\ Sample-E Blocked

ZipitFast\ Sample-F Blocked

Figure 16 – Compressor Evasion Results

To establish the baseline use case, we downloaded and

executed well-known malware to confirm it functioned as

expected in the test harness. Next, we introduced the

security product and attempted to attempted to download

and execute the known malware samples. The expected

behavior was confirmed and recorded, namely that the

malware was blocked or detected by the security product. Finally, the experimental use case was run, during which

we attempted to download the same known malware samples that were compressed using commercially available

compressors. The results were recorded. If the download was successful, a manual scan was attempted. Because

the baseline sample was blocked or detected, we did not attempt to execute the samples. It is expected that upon

extraction the newly uncompressed sample would have been blocked as well.

The Fortinet FortiGate 500E v6.0.3 +

FortiClient v6.0.3.6219 + FortiSandbox v6.0.3

blocked 46 compressors on download. In

total, 64 compressor samples were tested.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

32

Anti-Discovery

For anti-discovery evasions, the malware used several techniques to determine whether or not it was on a user’s

machine; whether or not a security product was present; whether or not debugging or sandboxing was occurring;

etc. If the sample discovered one or more of these scenarios to be present, it hid or remained dormant until the

right conditions were met, e.g., user input from a keyboard and/or mouse.

• Samples in the Anti-Sandbox tests utilized varied techniques to determine whether a sandbox environment

was present. If no sandbox was present, the malicious routine was executed.

• Samples in the Anti-Debugger tests utilized varied techniques to determine whether debuggers were present

in an environment. A malicious routine was executed only if no debuggers were detected.

• Samples in the Anti-Monitor tests utilized varied techniques to determine whether monitoring mechanisms

were present in an environment. A malicious routine was executed only if no monitoring was detected.

Anti-Sandbox

Anti-Sandbox Sample Checks/Actions/Tasks Result

Argcount Detects Arguments passed to executables Blocked

Argvalue Check for the value of argument passed to executables Blocked

Changingwindow "Real behavior" like a user changing windows Blocked

Checkpath Common path used in sandbox/testing environment Blocked

Checkselfname Self-name (some sandbox/testing renames the target file) Blocked

Displaymessagebox If message box will be clicked properly by a person Blocked

Enumwindows
Enumerate current window classes if name contains sandbox/testing
strings

Blocked

Enumwindowstitle Enumerate current window titles if name contains sandbox/testing strings Blocked

Loadeddll Detects loaded dlls commonly used by sandbox Blocked

Namedpipes Known named pipes used by sandbox/VM Blocked

Nettraffic Presence of internet traffic Blocked

Parentexplorer Parent process if explorer.exe Blocked

Sandboxprocess Parent process is a known sandbox process Blocked

Figure 17 – Detailed Anti-Sandbox Evasion Results

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

33

Anti-Debugger

Anti-Debugger Sample Checks/Actions/Tasks Result

Closehandle Debugger will exit if argument in Close Handle is invalid Blocked

Debuggerpresent Is Debugger Present API Blocked

Hardwarebp Check memory context if hardware breakpoint is set Blocked

Pageguard Checks for STATUS_GUARD_PAGE_VIOLATION upon triggering a memory jump Blocked

Remotedebugger Check Remote Debugger Present API Blocked

Figure 18 – Detailed Anti-Debugger Evasion Results

Anti-Monitor

Anti-Monitor Sample Checks/Actions/Tasks Result

Acceleratedsleep Check if time is being accelerated via APIs Blocked

Analysistools Check for presence of certain analysis tools in process list Blocked

Mousecursor Check for movement of mouse Blocked

Ntdelay Check for time delays using NtDelayExecution Blocked

Sleeploop Perform loop in a Sleep API to determine minute changes in time Blocked

Sleeppatched Is Sleep API patched Blocked

Figure 19 – Detailed Anti-Monitor Evasion Results

Data Exfiltration

Breaches may occur as a result of a malicious insider or as a result of an outside attacker gaining physical access to

a system. Commercial hardware implants are easily available to enable persistence, load malware, offload

documents, and backdoor systems.

To test the BPS’ capability to detect exfiltration of sensitive data, multiple data points were used, including but not

limited to: title, first name, last name, city, street name, zip code, country, email, username, telephone number,

birthday, age, credit card type, credit card number, passport number, favorite color, occupation, name of

employer, blood type, weight, password, and several types of hashes for passwords. The following file types were

used to store sensitive data: .txt, .sqlite, .csv, .htm, .xls, .xlsx.

Prior to testing, we installed a USB mouse, a USB flash/thumb drive, and a Yubikey U2F device and then confirmed

each device was functioning properly. This ensured vendors were not simply disabling access via USB without

allowing authorized devices to use USB access. Subsequently, keystroke injection attacks, sideloading of malware,

main-in-the-middle attacks, and other techniques based on physical access to the system/premises were tested

using COTS hardware implants and built-in OS functionality (“living off the land”).

We deployed one Arch Linux server running Linux 4.17.5-1-ARCH x86_64 and nine victim machines: five running

Arch Linux 4.17.5-1-ARCH x86_64; two running 64-Bit Windows 7 (version 6.1 (Build 7601: SP1); and two running

64-Bit Windows 10 (version 1709 (Build: 16299.125). These tests were conducted using various command shell

tools and Bash Bunny (which was configured to emulate USB Keyboard and USB Keyboard + USB Storage).

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

34

Figure 20 through Figure 24 depict exfiltration results for the Fortinet FortiGate 500E v6.0.3 + FortiSandbox v6.0.3.

The first test utilized Ncat to open a shell on the remote server. If this attempt was successful, data exfiltration was

attempted

Test Data Exfiltration

Ncat – Data exfiltration Missed

Figure 20 – Ncat Shell and Ncat Data Exfiltration

The second test utilized HTTP POST to exfiltrate data.

Test Result

HTTP POST Missed

Figure 21 – HTTP POST Data Exfiltration

The third test attempted to open a shell on the remote server using SSH. SSH tunnel was used for data exfiltration.

Test Result

SSH tunnel Missed

Figure 22 – SSH Shell & SSH Tunnel Data Exfiltration

The fourth test attempted to open a shell on the remote server using an ICMP tunnel. HTTP POST was used for

data exfiltration.

Test Result

ICMP tunnel w/HTTP POST Blocked

Figure 23 – ICMP Shell & ICMP Tunnel/HTTP POST Data Exfiltration

The fifth method involved the use of a DNS Tunnel to the remote server. HTTP POST was used for data exfiltration.

Test Result

DNS tunnel w/HTTP POST Blocked

Figure 24 – DNS Tunnel & HTTP POST Data Exfiltration

Figure 25 through Figure 28 depict exfiltration results for the FortiClient v6.0.3.6219.

The sixth method involved the use of a USB (Bash Bunny) to emulate a USB Keyboard. Ncat was used for data

exfiltration.

Test
Execute

Command
Computer

Information
Copy

Documents
Dump

Registry
Screenshot
of Desktop

Data
Exfiltration

Ncat Missed Blocked Blocked Blocked Blocked Blocked

Figure 25 – USB Keyboard & Ncat Data Exfiltration (Windows 7)

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

35

The seventh method involved the use of a USB (Bash Bunny) to emulate a USB Keyboard and storage. USB storage

and Ncat was used for data exfiltration.

Test
Execute

Command
Computer

Information
Copy

Documents
Dump

Registry
Screenshot
of Desktop

Data
Exfiltration

USB/Ncat Blocked Blocked Blocked Blocked Blocked Blocked

Figure 26 – USB Keyboard/ Storage & Ncat Data Exfiltration (Windows 7)

The eighth method involved the use of a USB (Bash Bunny) to emulate a USB Keyboard. Ncat was used for data

exfiltration.

Test
Execute

Command
Computer

Information
Copy

Documents
Dump

Registry
Screenshot
of Desktop

Windows
Vault

Credentials

Data
Exfiltration

Ncat Missed Missed Missed Missed Missed Missed Missed

Figure 27 – USB Keyboard & Ncat Data Exfiltration (Windows 10)

The ninth method involved the use of a USB (Bash Bunny) to emulate a USB Keyboard and storage. USB storage

and Ncat was used for data exfiltration.

Test
Execute

Command
Computer

Information
Copy

Documents
Dump

Registry
Screenshot
of Desktop

Windows
Vault

Credentials

Data
Exfiltration

USB /Ncat Blocked Blocked Blocked Blocked Blocked Blocked Blocked

Figure 28 – USB Keyboard/ Storage & Ncat Data Exfiltration (Windows 10)

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

36

Network Device(s) Performance

There is frequently a trade-off between security effectiveness and performance; a product’s security effectiveness

should be evaluated within the context of its performance, and vice versa. Ixia BreakingPoint PS-1 (Software

version 8.40.16.19) was used to test performance.

Maximum Capacity

The use of traffic generation appliances allows NSS engineers to create “real-world” traffic at multi-Gigabit speeds

as a background load for the tests.

The aim of these tests was to stress the inspection engine and determine how it coped with high volumes of TCP

connections per second, application layer transactions per second, and concurrent open connections. All packets

contained valid payload and address data, and these tests provided an excellent representation of a live network

at various connection/transaction rates. Note that in all tests the following critical “breaking points”—where the

final measurements are taken—were used:

• Excessive concurrent TCP connections – Latency within the BPS is causing an unacceptable increase in open

connections.

• Excessive concurrent HTTP connections – Latency within the BPS is causing excessive delays and increased

response time.

• Unsuccessful HTTP transactions – Normally, there should be zero unsuccessful transactions. Once these

appear, it is an indication that excessive latency within the BPS is causing connections to time out.

Figure 29 – Concurrency and Connection Rates

Maximum TCP Connections

per Second

Maximum HTTP

Connections per Second

Maximum HTTP

Transactions per Second

MAX CPS & TPS 78,420 64,000 150,200

Max Concurrent Connections 4,275,101 4,275,101 4,275,101

4,275,101

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

C
o

n
n

ec
ti

o
n

 R
a

te
s

C
o

n
cu

rr
en

t
C

o
n

n
ec

ti
o

n
s

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

37

HTTP Capacity

These tests stressed the HTTP detection engine and determined how the system coped with network loads of

varying average packet size and varying connections per second. By creating genuine session-based traffic with

varying session lengths, the BPS was forced to track valid TCP sessions, thus ensuring a higher workload than for

simple packet-based background traffic. This provides a test environment that is as close to real-world conditions

as can be achieved in a lab environment, while also ensuring absolute accuracy and repeatability.

Each transaction consisted of a single HTTP GET request with no transaction delays (that is, the web server

responds immediately to all requests). All packets contained valid payload (a mix of binary and ASCII objects) and

address data. The test provides an excellent representation of a live network (albeit one biased toward HTTP

traffic) at various network loads.

Figure 30 – HTTP Capacity

Application Average Response Time – HTTP

Application Average Response Time – HTTP (at 90% Maximum Load) Milliseconds

2.500 Connections per Second – 44 Kbyte Response 3.4

5,000 Connections per Second – 21 Kbyte Response 2.0

10,000 Connections per Second – 10 Kbyte Response 2.2

20,000 Connections per Second – 4.5 Kbyte Response 1.1

40,000 Connections per Second – 1.7 Kbyte Response 0.9

Figure 31 – Average Application Response Time (Milliseconds)

44 KB
Response

21 KB
Response

10 KB
Response

4.5 KB
Response

1.7 KB
Response

CPS 10,040 13,460 17,050 18,860 19,940

Mbps 4,016 2,692 1,705 943 499

4,016

2,692

1,705

943

499

0

5,000

10,000

15,000

20,000

25,000

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

C
o

n
n

e
ct

io
n

s
p

e
r

Se
co

n
d

M
e

ga
b

it
s

p
e

r
Se

co
n

d

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

38

HTTP Capacity with HTTP Persistent Connections

These tests determine how the BPS coped with network loads of varying average packet size and varying

connections per second while inspecting all traffic. By creating genuine session-based traffic with varying session

lengths, the BPS was forced to track valid TCP sessions, thus ensuring a higher workload than for simple packet-

based background traffic. This provides a test environment that is as close to real-world conditions as it is possible

to achieve in a lab environment, while ensuring absolute accuracy and repeatability.

This test used HTTP persistent connections, with each TCP connection containing 10 HTTP GETs and associated

responses. All packets contained valid payload (a mix of binary and ASCII objects) and address data. The test

provides an excellent representation of a live network at various network loads. The stated response size was the

total of all HTTP responses within a single TCP session.

Figure 32 – HTTP Capacity with HTTP Persistent Connections

HTTP 250 CPS HTTP 500 CPS HTTP 1000 CPS

CPS 1,336 1,721 2,047

Mbps 5,344 3,442 2,047

5,344

3,442

2,047

0

500

1,000

1,500

2,000

2,500

0

1,000

2,000

3,000

4,000

5,000

6,000

C
o

n
n

e
ct

io
n

s
p

e
r

Se
co

n
d

M
e

ga
b

it
s

p
e

r
Se

co
n

d

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

39

Single Application Flows

NSS-Tested Throughput is rated at 5,717Mbps and is calculated as a weighted average of the traffic that we

expected the BPS to experience in an enterprise environment. For more details on weighting and single application

flow testing, please see the Appendix: Product Scorecard and the NSS Labs Breach Prevention Test Methodology,

available at www.nsslabs.com.

Figure 33 – Single Application Flows

4,630

2,065

1,593

1,963

7,047

2,468

1,781

10,000

7,176

0 2,000 4,000 6,000 8,000 10,000 12,000

Telephony

EMAIL

Fileserver

Remote Console

Video

Meetings

Financial

File Sharing

Database

Telephony EMAIL Fileserver
Remote

Console
Video Meetings Financial File Sharing Database

Mbps 4,630 2,065 1,593 1,963 7,047 2,468 1,781 10,000 7,176

http://www.nsslabs.com/

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

40

Total Cost of Ownership (TCO)

Implementation of security solutions can be complex, with several factors affecting the overall cost of deployment,

maintenance, and upkeep. All of the following should be considered over the course of the useful life of a product:

• Product Purchase – The cost of acquisition

• Product Maintenance – The fees paid to the vendor, including software and hardware support, maintenance,

and other updates

• Installation – The time required to take the solution out of the box, configure it, install components in the

network, apply updates and patches, and set up desired logging and reporting

• Upkeep – The time required to apply periodic updates and patches from vendors, including hardware,

software, and other updates

• Management – Day-to-day management tasks, including solution configurations, policy updates, policy

deployment, alert handling, and so on

Calculating the Total Cost of Ownership (TCO)

Users Mbps per User Network Device Throughput Centralized Management

500 2 Mbps 1,000 Mbps 1

Figure 34 – Number of Users

When procuring a BPS for the enterprise, it is essential to factor in both bandwidth and number of users. NSS

research has shown that, in general, enterprise network administrators architect their networks for up to 2 Mbps

of sustained throughput per employee. For example, to support 500 users, an enterprise must deploy 500 agents

and/or one network device of 1,000 Mbps capacity.

Installation Time

Product Installation

Fortinet FortiGate 500E v6.0.3 + FortiClient v6.0.3.6219 + FortiSandbox v3.0.2 8 hours

Figure 35 – Installation Time (Hours)

The table reflects the amount of time that NSS engineers, with the help of vendor engineers, needed to install and

configure the BPS to the point where it operated successfully in the test harness, passed legitimate traffic, and

blocked and detected any prohibited or malicious traffic. This closely mimics a typical enterprise deployment

scenario for a single system. Installation cost is based on the time that an experienced security engineer would

require to perform the installation tasks described above. This approach allows NSS to hold constant the talent

cost and measure only the difference in time required for installation. Readers should substitute their own costs to

obtain accurate TCO figures.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

41

3-Year Total Cost of Ownership

Details Cost

Initial purchase price $6,809

Annual cost of support/ maintenance $5,265

Other Annual cost (AV, IPS, Cloud etc.) $0

Total cost year 1 $12,073

Total cost year 2 $5,265

Total cost year 3 $5,265

Total cost for all 3 years $22,603

Figure 36 – 3-Year TCO (US$)

Calculations are based on vendor-provided pricing information. Where possible, the 24/7 maintenance and

support option with 24-hour replacement is utilized, since this is the option typically selected by enterprise

customers. Prices reflected as submitted by the vendor for the purpose of this test; costs for central management

solutions (CMS) may be extra.

• Year 1 Cost is calculated by adding installation costs (US$75 per hour fully loaded labor x installation time) +

purchase price + first-year maintenance/support fees.

• Year 2 Cost consists only of maintenance/support fees.

• Year 3 Cost consists only of maintenance/support fees.

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

42

Appendix: Product Scorecard

Description Result

Security Effectiveness

False Positives 0.0%

Exploits Blocked Subsequently Detected

Drive-by Exploits 100.0% 0.0%

Social Exploits 100.0% 0.0%

Malware Blocked Subsequently Detected

Delivered over Email (IMAP) 98.9% 0.5%

Delivered over HTTP 100.0% 0.0%

Offline Infections (Employee Use Case) Download Execution Reconnecting to the Network

Sample 1 Blocked

Sample 2 Blocked

Sample 3 Blocked

Sample 4 Blocked

Sample 5 Blocked

Sample 6 Blocked

Sample 7 Blocked

Sample 8 Blocked

Sample 9 Blocked

Sample 10 Blocked

Sample 11 Blocked

Sample 12 Blocked

Sample 13 Blocked

Sample 14 Blocked

Sample 15 Blocked

Sample 16 Blocked

Sample 17 Blocked

Sample 18 Blocked

Sample 19 Blocked

Sample 20 Blocked

Offline Infections (Contractor Use Case) PASS

Packers Download Execution

Anskaya Blocked

Anskaya Blocked

Anskaya Blocked

Exestealth Blocked

Krypton Blocked

Winkypt Blocked

Winupack Blocked

excalibur Blocked

exefog Blocked

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

43

fearzpacker Blocked

fearzpacker Blocked

fishPE Blocked

fishPE Blocked

hidepx Blocked

hidepx Blocked

kkrunchy Blocked

kkrunchy Blocked

mew Blocked

petite24 Blocked

petite24 Blocked

telock Blocked

upx Blocked

upx Blocked

yc Blocked

yc Blocked

yc Blocked

Compressors Download Manual Scan

7zip Blocked

7zip Blocked

7zip Blocked

7zip Blocked

7zip Blocked

7zip Blocked

ALZIP Missed

ALZIP Missed

ALZIP Missed

ALZIP Missed

ALZIP Missed

ALZIP Missed

AshampooZip Blocked

AshampooZip Blocked

AverZip Blocked

AverZip Blocked

Bandizip Blocked

Bandizip Blocked

bzip2 Blocked

bzip2 Blocked

bzip2 Blocked

bzip2 Blocked

bzip2 Blocked

bzip2 Blocked

FilZip Blocked

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

44

FilZip Blocked

gzip Blocked

gzip Blocked

gzip Blocked

gzip Blocked

gzip Blocked

gzip Blocked

KuaiZip Missed

KuaiZip Missed

KuaiZip Missed

KuaiZip Missed

KuaiZip Missed

KuaiZip Missed

MuZip Blocked

MuZip Blocked

PicoZip Blocked

PicoZip Blocked

PowerArchiver Blocked

PowerArchiver Blocked

PowerArchiver Blocked

PowerArchiver Blocked

PowerArchiver Blocked

PowerArchiver Blocked

QuickZip Blocked

QuickZip Blocked

SimplyZip Missed

SimplyZip Missed

SimplyZip Missed

SimplyZip Missed

SimplyZip Missed

SimplyZip Missed

xz Blocked

xz Blocked

xz Blocked

xz Blocked

xz Blocked

xz Blocked

ZipitFast Blocked

ZipitFast Blocked

Sandbox Evasion Download Execution

ASB_argcount.exe Blocked

ASB_argvalue.exe Blocked

ASB_changingwindow.exe Blocked

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

45

ASB_checkpath.exe Blocked

ASB_checkselfname.exe Blocked

ASB_displaymessagebox.exe Blocked

ASB_enumwindows.exe Blocked

ASB_enumwindowstitle.exe Blocked

ASB_loadeddll.exe Blocked

ASB_namedpipes.exe Blocked

ASB_nettraffic.exe Blocked

ASB_parentexplorer.exe Blocked

ASB_sandboxprocess.exe Blocked

Anti-Debugger Evasion Download Execution

AD_closehandle.exe Blocked

AD_debuggerpresent.exe Blocked

AD_hardwarebp.exe Blocked

AD_pageguard.exe Blocked

AD_remotedebugger.exe Blocked

Anti-Monitoring Evasion Download Execution

AM_acceleratedsleep.exe Blocked

AM_analysistools.exe Blocked

AM_mousecursor.exe Blocked

AM_ntdelay.exe Blocked

AM_sleeploop.exe Blocked

AM_sleeppatched.exe Blocked

Data Exfiltration

Results

Ncat (Arch Linux) Missed

HTTP POST (Arch Linux) Missed

SSH Tunnel (Arch Linux) Missed

ICMP Tunnel w/HTTP POST (Arch Linux) Blocked

DNS tunnel w/HTTP POST (Arch Linux) Blocked

Ncat (Windows 7) Blocked

USB/Ncat (Windows 7) Blocked

Ncat (Windows 10) Missed

USB /Ncat (Windows 10) Blocked

IP Fragmentation Results

Small IP fragments; overlapping duplicate fragments with garbage payloads PASS

Small IP fragments in reverse order PASS

Small IP fragments in random order PASS

Small IP fragments; delay first fragment PASS

Small IP fragments in reverse order; delay last fragment PASS

Small IP fragments; interleave chaff after (invalid IP options) PASS

Small IP fragments in random order; interleave chaff sandwich (invalid IP options) PASS

Small IP fragments in random order; interleave chaff sandwich (invalid IP options); delay random fragment PASS

Small IP fragments; interleave chaff before (invalid IP options); DSCP value 16 PASS

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

46

Small IP fragments in random order; interleave chaff after (invalid IP options); delay random fragment; DSCP

value 34
PASS

TCP Segmentation Results

Small TCP segments; overlapping duplicate segments with garbage payloads PASS

Small TCP segments in reverse order PASS

Small TCP segments in random order PASS

Small TCP segments; delay first segment PASS

Small TCP segments in reverse order; delay last segment PASS

Small TCP segments; interleave chaff after (invalid TCP checksums); delay first segment PASS

Small TCP segments in random order; interleave chaff before (invalid TCP checksums); delay random

segment
PASS

Small TCP segments in random order; interleave chaff sandwich (out-of-window sequence numbers); TCP

MSS option
PASS

Small TCP segments in random order; interleave chaff after (requests to resynch sequence numbers mid-

stream); TCP window scale option
PASS

Small TCP segments in random order; interleave chaff sandwich (requests to resynch sequence numbers

mid-stream); TCP window scale option; delay first segment
PASS

Small overlapping TCP segments PASS

Small TCP segments; small IP fragments PASS

Small TCP segments; small IP fragments in reverse order PASS

Small TCP segments in random order; small IP fragments PASS

Small TCP segments; small IP fragments in random order PASS

Small TCP segments in random order; small IP fragments in reverse order PASS

Small TCP segments in random order; interleave chaff sandwich (invalid TCP checksums); small IP fragments

in reverse order; interleave chaff after (invalid IP options)
PASS

Small TCP segments; interleave chaff after (invalid TCP checksums); delay last segment; small IP fragments;

interleave chaff before (invalid IP options)
PASS

Small TCP segments; interleave chaff sandwich (invalid TCP checksums); small IP fragments; interleave chaff

sandwich (invalid IP options); delay last fragment
PASS

Small TCP segments in random order; interleave chaff before (out-of-window sequence numbers); TCP MSS

option; small IP fragments in random order; interleave chaff before (invalid IP options); delay random

fragment

PASS

Small TCP segments in random order; interleave chaff sandwich (requests to resynch sequence numbers

mid-stream); TCP window scale option; delay first segment; small IP fragments
PASS

Small overlapping TCP segments; small fragments PASS

Small overlapping TCP segments; delay last segment; small fragments; delay last fragment PASS

HTTP Obfuscation Results

Declared HTTP/0.9 response; but includes response headers; chunking declared but served without chunking PASS

HTTP/1.1 chunked response with chunk sizes preceded by multiple zeros (hex '30') PASS

HTTP/1.1 chunked response with chunk sizes followed by backspace (hex '08') FAIL

HTTP/1.1 chunked response with chunk sizes followed by end of text (hex '03') FAIL

HTTP/1.1 chunked response with chunk sizes followed by escape (hex '1b') FAIL

HTTP/1.1 chunked response with chunk sizes followed by null (hex '00') PASS

HTTP/1.1 chunked response with chunk sizes followed by a space (hex '20') then a zero (hex '30') PASS

HTTP/1.1 chunked response with final chunk size of

'00' (rather

than '0')

PASS

HTTP/1.1 response with line folded transfer-encoding header declaring chunking ('Transfer-Encoding: '

followed by CRLF (hex '0d 0a') followed by 'chunked' followed by CRLF (hex '0d 0a'); served without chunking
PASS

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

47

HTTP/1.1 response with transfer-encoding header declaring chunking with lots of whitespace ('Transfer-

Encoding:' followed by 8000 spaces (hex '20' * 8000) followed by 'chunked' followed by CRLF (hex '0d 0a');

served chunked

PASS

HTTP/1.0 response declaring chunking; served without chunking PASS

HTTP/1.0 response declaring chunking with invalid content-length header; served without chunking PASS

HTTP/1.1 response with "\tTransfer-Encoding: chunked"; served chunked PASS

HTTP/1.1 response with "\tTransfer-Encoding: chonked" after custom header line with "chunked" as value;

served without chunking
PASS

HTTP/1.1 response with header with no field name and colon+junk string; followed by '\tTransfer-Encoding:

chunked' header; followed by custom header; served chunked
PASS

HTTP/1.1 response with "\r\rTransfer-Encoding: chunked"; served chunked PASS

HTTP/1.1 response with using single "\n"'s instead of "\r\n"'s; chunked PASS

HTTP/1.1 response with \r\n\r\n before first header; chunked PASS

HTTP/1.1 response with "SIP/2.0 200 OK\r\n" before status header; chunked PASS

HTTP/1.1 response with space+junk string followed by \r\n before first header; chunked PASS

HTTP/1.1 response with junk string before status header; chunked PASS

HTTP/1.1 response with header end \n\014\n\n; chunked PASS

HTTP/1.1 response with header end \r\n\016\r\n\r\n; chunked PASS

HTTP/1.1 response with header end \n\r\r\n; chunked PASS

HTTP/1.1 response with header end \n\017\018\n\n; chunked PASS

HTTP/1.1 response with header end \n\030\n\019\n\n; chunked PASS

HTTP/1.1 response with status code -203.030; with message-body; chunked PASS

HTTP/1.1 response with status code 402; with message-body; chunked PASS

HTTP/1.1 response with status code 403; with message-body; chunked PASS

HTTP/1.1 response with status code 406; with message-body; chunked PASS

HTTP/1.1 response with status code 505; with message-body; chunked PASS

HTTP/1.1 chunked response with no status indicated PASS

No status line; chunking indicated; served unchunked PASS

HTTP/1.1 response with invalid content-length header size declaration followed by space and null (hex '20

00')
PASS

HTTP/1.01 declared; served chunked PASS

HTTP/01.1 declared; served chunked PASS

HTTP/2.B declared; served chunked PASS

HTTP/9.-1 declared; served chunked PASS

Double Transfer-Encoding: first empty; last chunked. Served with invalid content-length; not chunked. PASS

Relevant headers padded by preceding with hundreds of random custom headers PASS

HTTP Compression Results

HTTP/1.1 response compressed with gzip; invalid content-length PASS

HTTP/1.1 response declaring gzip followed by junk string; invalid content-length; served uncompressed PASS

HTTP/1.1 response compressed with deflate; invalid content-length PASS

HTTP/1.1 response declaring deflate followed by junk string; invalid content-length; served uncompressed PASS

HTTP/1.1 response with content-encoding declaration of gzip followed by space+junk string; served

uncompressed and chunked
PASS

HTTP/1.1 response with content-encoding header for deflate; followed by content-encoding header for gzip;

served uncompressed and chunked
PASS

HTTP/1.1 chunked response with chunk sizes preceded by multiple zeros (hex '30'); compressed with gzip PASS

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

48

HTTP/1.1 chunked response with chunk sizes followed by backspace (hex '08'); compressed with gzip FAIL

HTTP/1.1 chunked response with chunk sizes followed by end of text (hex '03'); compressed with gzip FAIL

HTTP/1.1 chunked response with chunk sizes followed by escape (hex '1b'); compressed with gzip FAIL

HTTP/1.1 chunked response with chunk sizes followed by null (hex '00'); compressed with gzip PASS

HTTP/1.1 chunked response with chunk sizes followed by a space (hex '20') then a zero (hex '30');

compressed with gzip
PASS

HTTP/1.1 chunked response with chunk sizes preceded by multiple zeros (hex '30'); compressed with deflate PASS

HTTP/1.1 chunked response with chunk sizes followed by backspace (hex '08'); compressed with deflate FAIL

HTTP/1.1 chunked response with chunk sizes followed by end of text (hex '03'); compressed with deflate FAIL

HTTP/1.1 chunked response with chunk sizes followed by escape (hex '1b'); compressed with deflate FAIL

HTTP/1.1 chunked response with chunk sizes followed by null (hex '00'); compressed with deflate PASS

HTTP/1.1 chunked response with chunk sizes followed by a space (hex '20') then a zero (hex '30');

compressed with deflate
FAIL

HTML Obfuscations (*Not included in the evasion calculations) Results

js-binary-obfuscation* FAIL

babel-minify* PASS

closure* PASS

code-protect* FAIL

confusion* FAIL

jfogs* FAIL

jfogs-reverse* FAIL

jjencode* PASS

jsbeautifier* PASS

jsmin* PASS

js-obfuscator* FAIL

qzx-obfuscator* FAIL

chunked and gzip compressed js-binary-obfuscation* FAIL

chunked and deflate compressed js-binary-obfuscation* FAIL

UTF-8 encoding PASS

UTF-8 encoding with BOM PASS

UTF-16 encoding with BOM PASS

UTF-8 encoding; no http or html declarations PASS

UTF-8 encoding with BOM; no http or html declarations PASS

UTF-16 encoding with BOM; no http or html declarations PASS

UTF-16-LE encoding without BOM FAIL

UTF-16-BE encoding without BOM FAIL

UTF-16-LE encoding without BOM; no http or html declarations FAIL

UTF-16-BE encoding without BOM; no http or html declarations FAIL

UTF-7 encoding PASS

UTF-8 encoding PASS

UTF-8 encoding PASS

EICAR string included at top of HTML PASS

Hex encoded script decoded using JavaScript unescape* PASS

Unicode encoded script decoded using JavaScript unescape* FAIL

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

49

Hex encoded script as variable decoded using JavaScript unescape* PASS

Unicode encoded script as variable decoded using JavaScript unescape* FAIL

padded with <=5MB PASS

padded with <=25MB PASS

padded with >25MB PASS

padded with <=5MB; chunked and compressed with gzip PASS

padded with <=25MB; chunked and compressed with gzip PASS

padded with >25MB; chunked and compressed with gzip PASS

padded with <=5MB; chunked and compressed with deflate PASS

padded with <=25MB; chunked and compressed with deflate PASS

padded with >25MB; chunked and compressed with deflate PASS

Protection Resiliency (*Not included in the evasion calculations) Results

Hex encoded VBScript decoded using JavaScript unescape* PASS

Hex encoded VBScript as variable decoded using JavaScript unescape* PASS

External VBScript file loaded from HTML* PASS

Multiple VBScript files loaded from HTML* PASS

Multiple VBScript files loaded with external JavaScript file* PASS

VBScript interspersed randomly with null bytes* PASS

nishang bind shell obfuscated with Unicorn* PASS

native Unicorn generated bind shell* PASS

nishang bind shell obfuscated with PowerSploit's Out-EncodedCommand* PASS

Veil Ordnance bind shell shellcode dropped into PowerSploit's Invoke-Shellcode; then obfuscated with

PowerSploit's Out-EncodedCommand*
PASS

custom bind shell shellcode obfuscated with Invoke-Obfuscation* PASS

custom bind shell shellcode with password prompt obfuscated with Invoke-Obfuscation* PASS

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values;

combine 'myarray' instantiation into single line; combine powershell command into single line; Remove

runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of script; Some

strings split with "+" and "&"; some lines split with "_"; some script commands/strings converted to series of

chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; nishang bind shell obfuscated with

Unicorn*

PASS

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values;

combine 'myarray' instantiation into single line; combine powershell command into single line; Remove

runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of script; Some

strings split with "+" and "&"; some lines split with "_"; some script commands/strings converted to series of

chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; nishang bind shell obfuscated with

Unicorn; chunked*

PASS

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values;

combine 'myarray' instantiation into single line; combine powershell command into single line; Remove

runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of script; Some

strings split with "+" and "&"; some lines split with "_"; some script commands/strings converted to series of

chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; native Unicorn generated bind

shell*

PASS

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values;

combine 'myarray' instantiation into single line; combine powershell command into single line; Remove

runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of script; Some

strings split with "+" and "&"; some lines split with "_"; some script commands/strings converted to series of

PASS

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

50

chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; native Unicorn generated bind shell;

chunked and gzip compressed*

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values;

combine 'myarray' instantiation into single line; combine powershell command into single line; Remove

runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of script; Some

strings split with "+" and "&"; some lines split with "_"; some script commands/strings converted to series of

chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; nishang bind shell obfuscated with

PowerSploit's Out-EncodedCommand*

PASS

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values;

combine 'myarray' instantiation into single line; combine powershell command into single line; Remove

runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of script; Some

strings split with "+" and "&"; some lines split with "_"; some script commands/strings converted to series of

chr()/Clng/&H using online vbscript obfuscator; both spaces and linefeeds replaced with multiples of each;

nishang bind shell obfuscated with PowerSploit's Out-EncodedCommand; chunked and deflate compressed*

PASS

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values;

combine 'myarray' instantiation into single line; combine powershell command into single line; Remove

runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of script; Some

strings split with "+" and "&"; some lines split with "_"; some script commands/strings converted to series of

chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; Veil Ordnance bind shell shellcode

dropped into PowerSploit's Invoke-Shellcode; then obfuscated with PowerSploit's Out-EncodedCommand*

PASS

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values;

combine 'myarray' instantiation into single line; combine powershell command into single line; Remove

runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of script; Some

strings split with "+" and "&"; some lines split with "_"; some script commands/strings converted to series of

chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; Veil Ordnance bind shell shellcode

dropped into PowerSploit's Invoke-Shellcode; then obfuscated with PowerSploit's Out-EncodedCommand;

chunked*

PASS

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values;

combine 'myarray' instantiation into single line; combine powershell command into single line; Remove

runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of script; Some

strings split with "+" and "&"; some lines split with "_"; some script commands/strings converted to series of

chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; custom bind shell shellcode

obfuscated with Invoke-Obfuscation*

PASS

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values;

combine 'myarray' instantiation into single line; combine powershell command into single line; Remove

runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of script; Some

strings split with "+" and "&"; some lines split with "_"; some script commands/strings converted to series of

chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; custom bind shell shellcode

obfuscated with Invoke-Obfuscation; chunked and gzip compressed*

PASS

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values;

combine 'myarray' instantiation into single line; combine powershell command into single line; Remove

runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of script; Some

strings split with "+" and "&"; some lines split with "_"; some script commands/strings converted to series of

chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; custom bind shell shellcode with

password prompt obfuscated with Invoke-Obfuscation*

PASS

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values;

combine 'myarray' instantiation into single line; combine powershell command into single line; Remove

runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of script; Some

strings split with "+" and "&"; some lines split with "_"; some script commands/strings converted to series of

chr()/Clng/&H; both spaces and linefeeds replaced with multiples of each; custom bind shell shellcode with

password prompt obfuscated with Invoke-Obfuscation; chunked and deflate compressed*

PASS

procedures and variables renamed; some script commands/strings converted to series of chr()/Clng/&H; both

spaces and linefeeds replaced with multiples of each; numeric values/equations modified and/or inserted;
PASS

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

51

hexadecimal values replaced with decimal values; Some strings split with "+" and "&"; some lines split with

"_"; nishang bind shell obfuscated with Unicorn*

procedures and variables renamed; some script commands/strings converted to series of chr()/Clng/&H; both

spaces and linefeeds replaced with multiples of each; numeric values/equations modified and/or inserted;

hexadecimal values replaced with decimal values; Some strings split with "+" and "&"; some lines split with

"_"; nishang bind shell obfuscated with Unicorn; chunked*

PASS

procedures and variables renamed; some script commands/strings converted to series of chr()/Clng/&H; both

spaces and linefeeds replaced with multiples of each; numeric values/equations modified and/or inserted;

hexadecimal values replaced with decimal values; Some strings split with "+" and "&"; some lines split with

"_"; native Unicorn generated bind shell*

PASS

procedures and variables renamed; some script commands/strings converted to series of chr()/Clng/&H; both

spaces and linefeeds replaced with multiples of each; numeric values/equations modified and/or inserted;

hexadecimal values replaced with decimal values; Some strings split with "+" and "&"; some lines split with

"_"; native Unicorn generated bind shell; chunked and gzip compressed*

PASS

procedures and variables renamed; some script commands/strings converted to series of chr()/Clng/&H; both

spaces and linefeeds replaced with multiples of each; numeric values/equations modified and/or inserted;

hexadecimal values replaced with decimal values; Some strings split with "+" and "&"; some lines split with

"_"; nishang bind shell obfuscated with PowerSploit's Out-EncodedCommand*

PASS

procedures and variables renamed; some script commands/strings converted to series of chr()/Clng/&H; both

spaces and linefeeds replaced with multiples of each; numeric values/equations modified and/or inserted;

hexadecimal values replaced with decimal values; Some strings split with "+" and "&"; some lines split with

"_"; nishang bind shell obfuscated with PowerSploit's Out-EncodedCommand; chunked and deflate

compressed*

PASS

procedures and variables renamed; some script commands/strings converted to series of chr()/Clng/&H; both

spaces and linefeeds replaced with multiples of each; numeric values/equations modified and/or inserted;

hexadecimal values replaced with decimal values; Some strings split with "+" and "&"; some lines split with

"_"; Veil Ordnance bind shell shellcode dropped into PowerSploit's Invoke-Shellcode; then obfuscated with

PowerSploit's Out-EncodedCommand*

PASS

procedures and variables renamed; some script commands/strings converted to series of chr()/Clng/&H; both

spaces and linefeeds replaced with multiples of each; numeric values/equations modified and/or inserted;

hexadecimal values replaced with decimal values; Some strings split with "+" and "&"; some lines split with

"_"; Veil Ordnance bind shell shellcode dropped into PowerSploit's Invoke-Shellcode; then obfuscated with

PowerSploit's Out-EncodedCommand; chunked*

PASS

procedures and variables renamed; some script commands/strings converted to series of chr()/Clng/&H; both

spaces and linefeeds replaced with multiples of each; numeric values/equations modified and/or inserted;

hexadecimal values replaced with decimal values; Some strings split with "+" and "&"; some lines split with

"_"; custom bind shell shellcode obfuscated with Invoke-Obfuscation*

PASS

procedures and variables renamed; some script commands/strings converted to series of chr()/Clng/&H; both

spaces and linefeeds replaced with multiples of each; numeric values/equations modified and/or inserted;

hexadecimal values replaced with decimal values; Some strings split with "+" and "&"; some lines split with

"_"; custom bind shell shellcode obfuscated with Invoke-Obfuscation; chunked and gzip compressed

PASS

procedures and variables renamed; some script commands/strings converted to series of chr()/Clng/&H; both

spaces and linefeeds replaced with multiples of each; numeric values/equations modified and/or inserted;

hexadecimal values replaced with decimal values; Some strings split with "+" and "&"; some lines split with

"_"; custom bind shell shellcode with password prompt obfuscated with Invoke-Obfuscation*

PASS

procedures and variables renamed; some script commands/strings converted to series of chr()/Clng/&H; both

spaces and linefeeds replaced with multiples of each; numeric values/equations modified and/or inserted;

hexadecimal values replaced with decimal values; Some strings split with "+" and "&"; some lines split with

"_"; custom bind shell shellcode with password prompt obfuscated with Invoke-Obfuscation; chunked and

deflate compressed*

PASS

both spaces and linefeeds replaced with multiples of each* PASS

procedures and variables renamed* PASS

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

52

numeric values/equations modified and/or inserted; hexadecimal values replaced with decimal values* PASS

change all chr() to chrw() and vice versa where possible* PASS

change chr() and chrw() to chrb()* PASS

some script commands/strings converted to series of chr()/Clng/&H using online vbscript obfuscator* PASS

Veil Ordnance bind shell shellcode dropped into PowerSploit's Invoke-Shellcode; then obfuscated with

PowerSploit's Out-EncodedCommand*
PASS

Use wscript to call original payload (PoshRat method) * PASS

nishang bind shell obfuscated with Unicorn* PASS

Remove runmumaa and add to setnotsafemode function; move setnotsafemode function to bottom of

script*
PASS

Some strings split with "+" and "&"; some lines split with "_"* PASS

combine 'myarray' instantiation into single line; combine powershell command into single line* PASS

Combination of techniques used in res-ren-001 and res-chr-003* PASS

Combination of techniques used in res-ren-001; res-chr-003; and res-wsp-001* PASS

Combination of techniques used in res-ren-001; res-chr-003; res-wsp-001; and res-pay-004* PASS

Combination of techniques used in res-ren-001 and res-pay-007* PASS

Combination of techniques used in res-ren-001; res-chr-003; res-wsp-001; res-pay-007; and res-mth-001* PASS

Combination of techniques used in res-mth-001 and res-mrg-001* PASS

Combination of techniques used in res-mth-001; res-mrg-001; and res-ord-001* PASS

Combination of techniques used in res-mth-001; res-mrg-001; res-ord-001; and res-pay-008* PASS

Combination of techniques used in res-mth-001; res-mrg-001; res-ord-001; res-pay-008; and res-spl-001* PASS

Combination of techniques used in res-mth-001; res-mrg-001; res-ord-001; res-pay-008; res-spl-001; and

res-chr-003*
PASS

Combination of techniques used in res-mth-001; res-mrg-001; res-ord-001; res-pay-008; res-spl-001; and

res-chr-003; plus removal of all CLng's*
PASS

Combination of techniques used in res-mth-001; res-mrg-001; res-ord-001; res-pay-008; and res-chr-003* PASS

Combination of techniques used in res-mth-001; res-mrg-001; res-ord-001; res-pay-008; res-spl-001; res-chr-

003; res-wsp-001; plus removal of all CLng's*
PASS

Combination of techniques used in res-mth-001; res-mrg-001; res-ord-001; res-pay-009; res-spl-001; res-chr-

003; res-wsp-001; res-ren-001; plus removal of all CLng's; replace 'LANGUAGE="VBScript"' with

'type="text/vbScript"'*

PASS

UTF-8 encoding; HTTP/1.1 chunked response with chunk sizes preceded by multiple zeros (hex '30'); small

TCP segments; small IP fragments; padding
PASS

UTF-8 encoding with BOM; HTTP/1.1 chunked response with chunk sizes followed by backspace (hex '08');

small TCP segments; small IP fragments in reverse order; padding
FAIL

UTF-16 encoding with BOM; HTTP/1.1 chunked response with chunk sizes followed by end of text (hex '03');

small TCP segments in random order; small IP fragments; padding
FAIL

UTF-8 encoding; no http or html declarations; HTTP/1.1 chunked response with chunk sizes followed by

escape (hex '1b'); small TCP segments; small IP fragments in random order; padding
FAIL

UTF-8 encoding with BOM; no http or html declarations; HTTP/1.1 chunked response with chunk sizes

followed by null (hex '00'); small TCP segments in random order; small IP fragments in reverse order;

padding

PASS

Performance

Raw Packet Processing Performance (UDP Traffic) Mbps NSS-Rated Throughput Weighting

64 Byte Packets 20,000 0.4%

128 Byte Packets 20,000 0.6%

256 Byte Packets 20,000 1.2%

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

53

512 Byte Packets 20,000 1.2%

1024 Byte Packets 20,000 2.5%

1514 Byte Packets 20,000 3.3%

Latency – UDP Microseconds

64 Byte Packets 2

128 Byte Packets 2

256 Byte Packets 2

512 Byte Packets 2

1024 Byte Packets 2

1514 Byte Packets 3

Maximum Capacity CPS

Theoretical Max. Concurrent TCP Connections 4,275,101

Maximum TCP Connections per Second 78,420

Maximum HTTP Connections per Second 64,000

Maximum HTTP Transactions per Second 150,200

HTTP Capacity with No Transaction Delays CPS Mbps NSS-Rated Throughput Weighting

2,500 Connections per Second – 44 Kbyte Response 10,040 4,016 8.0%

5,000 Connections per Second – 21 Kbyte Response 13,460 2,692 7.5%

10,000 Connections per Second – 10 Kbyte Response 17,050 1,705 7.0%

20,000 Connections per Second – 4.5 Kbyte Response 18,860 943 7.0%

40,000 Connections per Second – 1.7 Kbyte Response 19,940 499 4.0%

Application Average Response Time – HTTP (at 90% Max Load) Milliseconds

2.500 Connections per Second – 44 Kbyte Response 3.4

5,000 Connections per Second – 21 Kbyte Response 2.0

10,000 Connections per Second – 10 Kbyte Response 2.2

20,000 Connections per Second – 4.5 Kbyte Response 1.1

40,000 Connections per Second – 1.7 Kbyte Response 0.9

HTTP Capacity with HTTP Persistent Connections CPS Mbps

250 Connections per Second 1,336 5,344

500 Connections per Second 1,721 3,442

1,000 Connections per Second 2,047 2,047

Single Application Flows Mbps NSS-Rated Throughput Weighting

Telephony 4,630 16.9%

EMAIL 2,065 12.0%

Fileserver 1,593 0.4%

Remote Console 1,963 0.8%

Video 7,047 16.2%

Meetings 2,468 0.8%

Financial 1,781 0.0%

File Sharing 10,000 7.2%

Database 7,176 3.0%

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

54

Total Cost of Ownership

Ease of Use

Initial Setup (Hours) 8

Expected Costs

Initial purchase price $6,809

Annual cost of support/ maintenance $5,265

Other Annual cost (AV, IPS, Cloud etc.) $0

Total cost year 1 $12,073

Total cost year 2 $5,265

Total cost year 3 $5,265

Total cost for all 3 years $22,603

Figure 37 – Scorecard

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

55

Test Environment

• VmWare vCenter (Version 6.5.0 Build 5973321)

• VmWare vSphere (Version 6.5.0.10000 Build 5973321)

• VmWare ESXi (Version 6.5.0-20170702001-standard)

• BaitNET (NSS Labs Proprietary)

• Evader++ (NSS Labs Proprietary)

• Hak5 Bash Bunny (1.5_298)

• Ixia BreakingPoint Perfect Storm (Version 8.40.16.19)

• Rapid7 Metasploit (v5.0.3-dev)

• 32-bit Microsoft Windows 7 (Version 6.1 (Build 7601: SP1) with Internet Explorer 9 (Version 9.0.8112.16421 –

Update version 9.0.26)

• 64-bit Microsoft Windows 7 (Version 6.1 (Build 7601: SP1) and Internet Explorer 11 (Version 11.0.9600.17843

– Update version 11.0.20)

• 64-bit Microsoft Windows 10 (version 1607 (Build: 14393.0), Internet Explorer 11 (Version 11.0.14393.0 –

Update version 11.0.33)

• Microsoft Office 2016 with Microsoft Word (Version 1609, Build 7369.2038)

• Microsoft Silverlight 5.1.20125

• Adobe Reader 9.3.4

• Adobe Flash Player 18.0.0.160

• Adobe Flash Player 29.0.0.171

• Adobe Reader 9.40

• Adobe Reader DC 2017.012.20093

• Oracle Java 6 Update 27

• Oracle Java 6 Update 27

• Oracle Java 8 Update 171

• Oracle Java 8 Update 181

• Nitro Pro PDF Reader 11.0.3.173

• WinRar 4.20

• Kali (Kernel release 4.19.0-kali1-amd64)

• CentOS 7 (Kernel release 3.10.0-957.5.1.el7.x86_64)

• Arch Linux (Kernel release 4.17.5-1-ARCH)

• FreeBSD (Kernel release 11.1-RELEASE-p1)

Published: August 7, 2019

Authors – Jessica Williams, Ryan Turner, Tim Otto

This report is Confidential and is expressly limited to NSS Labs’ licensed users.

56

This and other related documents are available at: www.nsslabs.com. To receive a licensed copy or report misuse,

please contact NSS Labs.

© 2019 NSS Labs, Inc. All rights reserved. No part of this publication may be reproduced, copied/scanned, stored on a retrieval

system, e-mailed or otherwise disseminated or transmitted without the express written consent of NSS Labs, Inc. (“us” or “we”).

Please read the disclaimer in this box because it contains important information that binds you. If you do not agree to these

conditions, you should not read the rest of this report but should instead return the report immediately to us. “You” or “your”

means the person who accesses this report and any entity on whose behalf he/she has obtained this report.

1. The information in this report is subject to change by us without notice, and we disclaim any obligation to update it.

2. The information in this report is believed by us to be accurate and reliable at the time of publication but is not guaranteed. All

use of and reliance on this report are at your sole risk. We are not liable or responsible for any damages, losses, or expenses of

any nature whatsoever arising from any error or omission in this report.

3. NO WARRANTIES, EXPRESS OR IMPLIED ARE GIVEN BY US. ALL IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, ARE HEREBY DISCLAIMED AND EXCLUDED

BY US. IN NO EVENT SHALL WE BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, INCIDENTAL, PUNITIVE, EXEMPLARY, OR INDIRECT

DAMAGES, OR FOR ANY LOSS OF PROFIT, REVENUE, DATA, COMPUTER PROGRAMS, OR OTHER ASSETS, EVEN IF ADVISED OF THE

POSSIBILITY THEREOF.

4. This report does not constitute an endorsement, recommendation, or guarantee of any of the products (hardware or software)

tested or the hardware and/or software used in testing the products. The testing does not guarantee that there are no errors or

defects in the products or that the products will meet your expectations, requirements, needs, or specifications, or that they will

operate without interruption.

5. This report does not imply any endorsement, sponsorship, affiliation, or verification by or with any organizations mentioned in

this report.

6. All trademarks, service marks, and trade names used in this report are the trademarks, service marks, and trade names of their

respective owners.

Test Methodology

NSS Labs Breach Prevention Systems (BPS) Test Methodology v2.0

NSS Labs Evasions Test Methodology v1.2

Copies of the test methodologies are available at www.nsslabs.com.

Contact Information

NSS Labs, Inc.

3711 South Mopac Expressway

Building 1, Suite 400

Austin, TX 78746

info@nsslabs.com

www.nsslabs.com

http://www.nsslabs.com/
http://www.nsslabs.com/

